Comparative Study of BSO and GA for the Optimizing Energy in Ambient Intelligence | SpringerLink
Skip to main content

Comparative Study of BSO and GA for the Optimizing Energy in Ambient Intelligence

  • Conference paper
Advances in Soft Computing (MICAI 2011)

Abstract

One of the concerns of humanity today is developing strategies for saving energy, because we need to reduce energetic costs and promote economical, political and environmental sustainability. As we have mentioned before, in recent times one of the main priorities is energy management. The goal in this project is to develop a system that will be able to find optimal configurations in energy savings through management light. In this paper a comparison between Genetic Algorithms (GA) and Bee Swarm Optimization (BSO) is made. These two strategies are focus on lights management, as the main scenario, and taking into account the activity of the users, size of area, quantity of lights, and power. It was found that the GA provides an optimal configuration (according to the user’s needs), and this result was consistent with Wilcoxon’s Test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zelkha, E., Epstein, B.B.: From Devices to Ambient Intelligence: The Transformation of Consumer Electronics. In: Digital Living Room Conference (1998)

    Google Scholar 

  2. ISTAG Scenarios for Ambient Intelligence in Compiled by Ducatel, K., M.B. 2010 (2011)

    Google Scholar 

  3. Sulaiman, F., Ahmad, A.: Automated Fuzzy Logic Light Balanced Control Algorithm Implemented in Passive Optical Fiber Daylighting System (2006)

    Google Scholar 

  4. Boman, M., Davidsson, P., Skarmeas, N., Clark, K.: Energy saving and added customer value in intelligent buildings. In: Third International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology (1998)

    Google Scholar 

  5. Akkermans, J., Ygge, F.: Homebots: Intelligent decentralized services for energy management. Ergon Verlag (1996)

    Google Scholar 

  6. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press (1975)

    Google Scholar 

  7. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of IEEE International Conference on Neural Networks (1995)

    Google Scholar 

  8. Pham, D., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S.: The bees algorithm–a novel tool for complex optimisation problems. In: Proc 2nd Int Virtual Conf. on Intelligent Production Machines and Systems (IPROMS 2006), pp. 454–459 (2006)

    Google Scholar 

  9. Nieto, J.: Algoritmos basados en cúmulos de partículas para la resolución de problemas complejos (2006)

    Google Scholar 

  10. Sotelo-Figueroa, M.A., Baltazar, R., Carpio, M.: Application of the Bee Swarm Optimization BSO to the Knapsack Problem. In: Melin, P., Kacprzyk, J., Pedrycz, W. (eds.) Soft Computing for Recognition Based on Biometrics. SCI, vol. 312, pp. 191–206. Springer, Heidelberg (2010), doi:10.1007/978-3-642-15111-8_12 ISBN: 978-3-642-15110-1

    Chapter  Google Scholar 

  11. Sotelo-Figueroa, M.A., del Rosario Baltazar-Flores, M., Carpio, J.M., Zamudio, V.: A Comparation between Bee Swarm Optimization and Greedy Algorithm for the Knapsack Problem with Bee Reallocation. In: 2010 Ninth Mexican International Conference on Artificial Intelligence (MICAI), November 8-13, pp. 22–27 (2010), doi: 10.1109/MICAI.2010.32

    Google Scholar 

  12. Sotelo-Figueroa, M., Baltazar, R., Carpio, M.: Application of the Bee Swarm Optimization BSO to the Knapsack Problem. Journal of Automation, Mobile Robotics & Intelligent Systems (JAMRIS) 5 (2011)

    Google Scholar 

  13. Haupt, R.L.: Practical Genetic Algorithms (2004)

    Google Scholar 

  14. Hernández, J. L. (s.f.): Web de Tecnología Eléctrica. Obtenido de Web de Tecnología Eléctrica, http://www.tuveras.com/index.html

  15. Fernandez, J.G. (s.f.): EDISON, Aprendizaje Basado en Internet. Obtenido de EDISON, Aprendizaje Basado en Internet, http://edison.upc.edu/

  16. Woolson, R.: Wilcoxon Signed-Rank Test. Wiley Online Library (1998)

    Google Scholar 

  17. Laszlo, C.: Lighting Design & Asoc. (n.d.). Manual de luminotecnia para interiores. retrieved from Manual de luminotecnia para interiores, http://www.laszlo.com.ar/manual.htm

  18. Sotelo-Figueroa, M.A.: Aplicacion de Metahueristicas en el Knapsack Problem (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Romero-Rodríguez, W.J.G., Zamudio Rodríguez, V.M., Baltazar Flores, R., Sotelo-Figueroa, M.A., Alcaraz, J.A.S. (2011). Comparative Study of BSO and GA for the Optimizing Energy in Ambient Intelligence. In: Batyrshin, I., Sidorov, G. (eds) Advances in Soft Computing. MICAI 2011. Lecture Notes in Computer Science(), vol 7095. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25330-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25330-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25329-4

  • Online ISBN: 978-3-642-25330-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics