Stochastic Learning Automata for Self-coordination in Heterogeneous Multi-Tasks Selection in Multi-Robot Systems | SpringerLink
Skip to main content

Stochastic Learning Automata for Self-coordination in Heterogeneous Multi-Tasks Selection in Multi-Robot Systems

  • Conference paper
Advances in Artificial Intelligence (MICAI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7094))

Included in the following conference series:

Abstract

This paper focuses on the general problem of coordinating multiple robots. More specifically, it addresses the self-election of heterogeneous specialized tasks by autonomous robots, as opposed to the usual multi-tasks allocation problem in multi-robot systems in which an external controller distributes the existing tasks among the individual robots. In this work we are considering a specifically distributed or decentralized approach in which we are particularly interested on decentralized solution where the robots themselves autonomously and in an individual manner, are responsible of selecting a particular task so that all the existing tasks are optimally distributed and executed. In this regard, we have established an experimental scenario and we propose a solution through automata learning-based probabilistic algorithm, to solve the corresponding multi-tasks distribution problem. The paper ends with a critical discussion of experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Farinelli, A., Locchi, L., Nardi, D.: Multirobot Systems: A Classification Focused on Coordination. IEEE Transactions on Systems, Man and Cybernetics, 2015–2028 (2004)

    Google Scholar 

  2. Gerkey, B., Mataric, M.: A formal analysis and taxonomy of task allocation in multi-robot systems. Intl. J. of Robotics Research, 939–954 (2004)

    Google Scholar 

  3. Price, R., Tiño, P.: Evaluation of Adaptive Nature Inspired Task Allocation Against Alternate Decentralised Multiagent Strategies. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 982–990. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Yang, Y., Zhou, C., Tian, Y.: Swarm Robots Task Allocation Based on Response Threshold Model. In: IEEE International Conference on Autonomous Robots and Agents, pp. 171–176 (2009)

    Google Scholar 

  5. Quiñonez, Y., De Lope, J., Maravall, D.: Bio-Inspired Decentralized Self-Coordination Algorithms for Multi-Heterogeneous Specialized Tasks Distribution in Multi-Robot Systems. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2011, Part I. LNCS, vol. 6686, pp. 30–39. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Dias, B., Stentz, A.: A Free Market Architecture for Distributed Control of a Multirobot System. In: 6th International Conference on Intelligent Autonomous Systems, pp. 115–122 (2000)

    Google Scholar 

  7. Dias, B.: Traderbots: A new Paradigm for Robust and Efficient Multirobot Coordination in Dynamics Environments. Ph.D. dissertation, Robotics Institute, Carnegie Mellon University, Pittsburgh (2004)

    Google Scholar 

  8. Jones, E., Browning, B., Dias, B., Argall, B., Veloso, M., Stentz, A.: Dynamically Formed Heterogeneous Robot Teams Performing Tightly-Coordinated Tasks. In: IEEE Conference on Robotics and Automation, pp. 570–575 (2006)

    Google Scholar 

  9. Song, T., Yan, X., Liang, A., Chen, K., Guan, H.: A Distributed Bidirectional Auction Algorithm for Multirobot Coordination. In: IEEE International Conference on Research Challenges in Computer Science, pp. 145–148 (2009)

    Google Scholar 

  10. Shiroma, P., Campos, M.: CoMutaR: A Framework for Multi-robot Coordination and Task Allocation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4817–4824 (2009)

    Google Scholar 

  11. Baglietto, M., Cannata, C., Capezio, F., Grosso, A., Sgorbissa, A.: A Multi-robot Coordination System Based on RFID Technology. In: IEEE International Conference on Advanced Robotics, pp. 1–6 (2009)

    Google Scholar 

  12. Huntsberger, T., Trebi-Ollennu, A., Aghazarian, H., Schenker, P.: Distributed Control of Multi-robot System Engaged in Tightly Coupled Tasks. Journal Autonomous Robots, 79–92 (2004)

    Google Scholar 

  13. Gerkey, B., Mataric, M.: Multi-Robot Task Allocation: Analyzing the Complexity and Optimality of Key Architectures. In: IEEE International Conference on Robotics and Automation, pp. 3862–3868 (2003)

    Google Scholar 

  14. Narendra, K., Thathachar, M.: Learning Automata: An Introduction. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  15. Narendra, K., Thathachar, M.: Learning Automata: A Survey. IEEE Transactions on Systems, Man, and Cybernetics, 323–334 (1974)

    Google Scholar 

  16. Obaidat, M., Papadimitriou, G., Pomportsis, A.: Guest Editorial Learning Automata: Theory, Paradigms, and Applications. IEEE Transactions on Systems, Man, and Cybernetics–Part B: Cybernetics, 706–709 (2002)

    Google Scholar 

  17. Maravall, D., De Lope, J.: Fusion of Learning Automata Theory and Granular Inference Systems: ANLAGIS. Applications to Pattern Recognition and Machine Learning. Neurocomputing 74, 1237–1242 (2011)

    Google Scholar 

  18. Narendra, K., Wright, E., Mason, L.: Applications of Learning Automata to Telephone Traffic Routing and Control. IEEE Transactions on Systems, Man, and Cybernetics, 785–792 (1977)

    Google Scholar 

  19. Narendra, K., Viswanathan, R.: A Two-Level System of Schotastic Automata for Periodic Random Environments. IEEE Transactions on Systems, Man, and Cybernetics, 285–289 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Quiñonez, Y., Maravall, D., de Lope, J. (2011). Stochastic Learning Automata for Self-coordination in Heterogeneous Multi-Tasks Selection in Multi-Robot Systems. In: Batyrshin, I., Sidorov, G. (eds) Advances in Artificial Intelligence. MICAI 2011. Lecture Notes in Computer Science(), vol 7094. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25324-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25324-9_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25323-2

  • Online ISBN: 978-3-642-25324-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics