Abstract
This paper investigates methods that allow a third-party authority to control contents transmitted using a public key infrastructure. Since public key encryption schemes are normally designed not to leak even partial information of plaintext, traditional public key encryption schemes do not allow such controlling by an authority. In the proposed schemes, an authority specifies some set of forbidden messages, and anyone can detect a ciphertext that encrypts one of the forbidden messages. The syntax of public key encryption with such a functionality (restrictive public key encryption), formal definitions of security requirement for restrictive public key encryption schemes, and an efficient construction of restrictive public key encryption are given.
In principle, restrictive public key encryption schemes can be constructed by adding an NIZK proof that proves whether the encrypted messages are not prohibited. However if one uses the general NIZK technique to construct such a non-interactive proof, the scheme becomes extremely inefficient. In order to avoid such an inefficient construction, the construction given in this paper uses techniques of Teranishi et al., Boudot, and Nakanishi et al.
One of the possible applications of restrictive public key encryption is protecting a public key infrastructure from abuse by terrorists by disallowing encryption of crime-related keywords. Another example is to perform format-check of a ballot in an electronic voting, by disallowing encryption of irregular format voting.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k-TAA. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg (2006)
Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)
Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)
Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)
Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)
Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)
Camenisch, J., Damgård, I.: Verifiable encryption, group encryption, and their applications to separable group signatures and signature sharing schemes. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 331–345. Springer, Heidelberg (2000)
Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003)
Cramer, R.: Modular Design of Secure yet Practical Cryptographic Protocols. PhD thesis, CWI and Uni. of Amsterdam (November 1996)
Damgård, I.: On Σ-protocol. Cryptologic Protocol Theory, CPT 2010, v.2 (2010), http://www.daimi.au.dk/~ivan/Sigma.pdf
Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)
Fuchsbauer, G., Pointcheval, D.: Proofs on encrypted values in bilinear groups and an application to anonymity of signatures. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 132–149. Springer, Heidelberg (2009)
Furukawa, J., Imai, H.: An efficient group signature scheme from bilinear maps. IEICE Transactions 89-A(5), 1328–1338 (2006)
Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)
Nakanishi, T., Fujii, H., Hira, Y., Funabiki, N.: Revocable group signature schemes with constant costs for signing and verifying. IEICE Transactions 93-A(1), 50–62 (2010)
Okamoto, T., Takashima, K.: Homomorphic encryption and signatures from vector decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 57–74. Springer, Heidelberg (2008)
Tate, S.R., Vishwanathan, R.: Improving cut-and-choose in verifiable encryption and fair exchange protocols using trusted computing technology. In: DBSec, pp. 252–267 (2009)
Teranishi, I., Furukawa, J., Sako, K.: k-times anonymous authentication. IEICE Transactions 92-A(1), 147–165 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sakai, Y., Emura, K., Hanaoka, G., Kawai, Y., Omote, K. (2011). Towards Restricting Plaintext Space in Public Key Encryption. In: Iwata, T., Nishigaki, M. (eds) Advances in Information and Computer Security. IWSEC 2011. Lecture Notes in Computer Science, vol 7038. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25141-2_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-25141-2_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25140-5
Online ISBN: 978-3-642-25141-2
eBook Packages: Computer ScienceComputer Science (R0)