Towards Restricting Plaintext Space in Public Key Encryption | SpringerLink
Skip to main content

Towards Restricting Plaintext Space in Public Key Encryption

  • Conference paper
Advances in Information and Computer Security (IWSEC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7038))

Included in the following conference series:

Abstract

This paper investigates methods that allow a third-party authority to control contents transmitted using a public key infrastructure. Since public key encryption schemes are normally designed not to leak even partial information of plaintext, traditional public key encryption schemes do not allow such controlling by an authority. In the proposed schemes, an authority specifies some set of forbidden messages, and anyone can detect a ciphertext that encrypts one of the forbidden messages. The syntax of public key encryption with such a functionality (restrictive public key encryption), formal definitions of security requirement for restrictive public key encryption schemes, and an efficient construction of restrictive public key encryption are given.

In principle, restrictive public key encryption schemes can be constructed by adding an NIZK proof that proves whether the encrypted messages are not prohibited. However if one uses the general NIZK technique to construct such a non-interactive proof, the scheme becomes extremely inefficient. In order to avoid such an inefficient construction, the construction given in this paper uses techniques of Teranishi et al., Boudot, and Nakanishi et al.

One of the possible applications of restrictive public key encryption is protecting a public key infrastructure from abuse by terrorists by disallowing encryption of crime-related keywords. Another example is to perform format-check of a ballot in an electronic voting, by disallowing encryption of irregular format voting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k-TAA. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)

    Article  MATH  Google Scholar 

  3. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Camenisch, J., Damgård, I.: Verifiable encryption, group encryption, and their applications to separable group signatures and signature sharing schemes. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 331–345. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Cramer, R.: Modular Design of Secure yet Practical Cryptographic Protocols. PhD thesis, CWI and Uni. of Amsterdam (November 1996)

    Google Scholar 

  10. Damgård, I.: On Σ-protocol. Cryptologic Protocol Theory, CPT 2010, v.2 (2010), http://www.daimi.au.dk/~ivan/Sigma.pdf

  11. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

  12. Fuchsbauer, G., Pointcheval, D.: Proofs on encrypted values in bilinear groups and an application to anonymity of signatures. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 132–149. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Furukawa, J., Imai, H.: An efficient group signature scheme from bilinear maps. IEICE Transactions 89-A(5), 1328–1338 (2006)

    Article  Google Scholar 

  14. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)

    Article  MATH  Google Scholar 

  15. Nakanishi, T., Fujii, H., Hira, Y., Funabiki, N.: Revocable group signature schemes with constant costs for signing and verifying. IEICE Transactions 93-A(1), 50–62 (2010)

    Article  MATH  Google Scholar 

  16. Okamoto, T., Takashima, K.: Homomorphic encryption and signatures from vector decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 57–74. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Tate, S.R., Vishwanathan, R.: Improving cut-and-choose in verifiable encryption and fair exchange protocols using trusted computing technology. In: DBSec, pp. 252–267 (2009)

    Google Scholar 

  18. Teranishi, I., Furukawa, J., Sako, K.: k-times anonymous authentication. IEICE Transactions 92-A(1), 147–165 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sakai, Y., Emura, K., Hanaoka, G., Kawai, Y., Omote, K. (2011). Towards Restricting Plaintext Space in Public Key Encryption. In: Iwata, T., Nishigaki, M. (eds) Advances in Information and Computer Security. IWSEC 2011. Lecture Notes in Computer Science, vol 7038. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25141-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25141-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25140-5

  • Online ISBN: 978-3-642-25141-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics