Reconstruction of Speech Signals from Their Unpredictable Points Manifold | SpringerLink
Skip to main content

Reconstruction of Speech Signals from Their Unpredictable Points Manifold

  • Conference paper
Advances in Nonlinear Speech Processing (NOLISP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7015))

Included in the following conference series:

Abstract

This paper shows that a microcanonical approach to complexity, such as the Microcanonical Multiscale Formalism, provides new insights to analyze non-linear dynamics of speech, specifically in relation to the problem of speech samples classification according to their information content. Central to the approach is the precise computation of Local Predictability Exponents (LPEs) according to a procedure based on the evaluation of the degree of reconstructibility around a given point. We show that LPEs are key quantities related to predictability in the framework of reconstructible systems: it is possible to reconstruct the whole speech signal by applying a reconstruction kernel to a small subset of points selected according to their LPE value. This provides a strong indication of the importance of the Unpredictable Points Manifold (UPM), already demonstrated for other types of complex signals. Experiments show that a UPM containing around 12% of the points provides very good perceptual reconstruction quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arneodo, A., Argoul, F., Bacry, E., Elezgaray, J., Muzy, J.F.: Ondelettes, multifractales et turbulence. Diderot Editeur, Paris (1995)

    Google Scholar 

  2. Boffetta, G., Cencini, M., Falcioni, M., Vulpiani, A.: Predictability: a way to characterize complexity. Physics Reports 356(6), 367–474 (2002), doi:10.1016/S0370-1573(01)00025-4

    Article  MathSciNet  MATH  Google Scholar 

  3. Frisch, U.: Turbulence: The legacy of A.N. Kolmogorov. Cambridge Univ. Press (1995)

    Google Scholar 

  4. Hu, Y., Loizou, P.C.: Evaluation of objective quality measures for speech enhancement. IEEE Trans. Audio Speech Language Processing 16, 229–238 (2008)

    Article  Google Scholar 

  5. Kaiser, J.F.: Some observations on vocal tract operation from a fluid flow point of view. In: Titze, I.R., Scherer, R.C. (eds.) Vocal Fold Physiology: Biomechanics, Acoustics, and Phonatory Control, pp. 358–386. The Denver Center for the Performing Arts (1983)

    Google Scholar 

  6. Khanagha, V., Daoudi, K., Pont, O., Yahia, H.: Improving text-independent phonetic segmentation based on the microcanonical multiscale formalism. In: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, ICASSP (2010)

    Google Scholar 

  7. Kokkinos, I., Maragos, P.: Nonlinear speech analysis using models for chaotic systems. IEEE Transactions on Speech and Audio Processing 13(6), 1098–1109 (2005)

    Article  Google Scholar 

  8. Kubin, G.: Nonlinear processing of speech. Speech Coding and Synthesis, ch. 16. Elsevier (1995)

    Google Scholar 

  9. Little, M., McSharry, P.E., Moroz, I., Roberts, S.: Testing the assumptions of linear prediction analysis in normal vowels. Journal of the Acoustical Society of America 119, 549–558 (2006)

    Article  Google Scholar 

  10. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press (1999)

    Google Scholar 

  11. Maragos, P., Potamianos, A.: Fractal dimensions of speech sounds: Computation and application to automatic speech recognition. Journal of Acoustic Society of America 105, 1925–1932 (1999)

    Article  Google Scholar 

  12. Pont, O., Turiel, A., Pérez-Vicente, C.J.: Description, modeling and forecasting of data with optimal wavelets. Journal of Economic Interaction and Coordination 4(1), 39–54 (2009)

    Article  Google Scholar 

  13. Pont, O., Turiel, A., Perez-Vicente, C.: Empirical evidences of a common multifractal signature in economic, biological and physical systems. Physica A 388(10), 2025–2035 (2009)

    Article  Google Scholar 

  14. Pont, O., Turiel, A., Yahia, H.: An Optimized Algorithm for the Evaluation of Local Singularity Exponents in Digital Signals. In: Aggarwal, J.K., et al. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 346–357. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Teager, H.M., Teager, S.M.: Evidence for nonlinear sound production mechanisms in the vocal tract. In: Hardcastle, W., Marchal, A. (eds.) Speech Production and Speech Modelling. NATO Advanced Study Institute Series D (1989)

    Google Scholar 

  16. Turiel, A., del Pozo, A.: Reconstructing images from their most singular fractal manifold. IEEE Trans. on Im. Proc. 11, 345–350 (2002)

    Article  MathSciNet  Google Scholar 

  17. Turiel, A., Pérez-Vicente, C., Grazzini, J.: Numerical methods for the estimation of multifractal singularity spectra on sampled data: A comparative study. Journal of Computational Physics 216(1), 362–390 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Turiel, A., Yahia, H., Vicente, C.P.: Microcanonical multifractal formalism: a geometrical approach to multifractal systems. part 1: singularity analysis. J. Phys. A, Math. Theor. 41, 015501 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Khanagha, V., Yahia, H., Daoudi, K., Pont, O., Turiel, A. (2011). Reconstruction of Speech Signals from Their Unpredictable Points Manifold. In: Travieso-González, C.M., Alonso-Hernández, J.B. (eds) Advances in Nonlinear Speech Processing. NOLISP 2011. Lecture Notes in Computer Science(), vol 7015. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25020-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25020-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25019-4

  • Online ISBN: 978-3-642-25020-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics