Abstract
Edge k -Clique Partition k -ECP is the problem of dividing the edge set of an undirected graph into a set of at most k edge-disjoint cliques, where k ≥ 1 is an input parameter. The problem is NP-hard but in FPT. We propose several improved FPT algorithms for k -ECP on K 4-free graphs, planar graphs, and cubic graphs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alber, J., Fernau, H., Niedermeier, R.: Graph separators: a parameter view. Journal of Computer and System Sciences 67, 808–832 (2003)
Alon, N., Yuster, R., Zwick, U.: Color-coding. Journal of the ACM 42(4), 844–856 (1995)
Bodlaender, H.L., Fellows, M.R., Heggernes, P., Mancini, F., Papadopoulos, C., Rosamond, F.: Clustering with partial information. Theoretical Computer Science 411(7-9), 1202–1211 (2010)
Cerioli, M.R., Faria, L., Ferreira, T.O., Martinhon, C.A.J., Protti, F., Reed, B.: Partition into cliques for cubic graphs: planar case, complexity and approximation. Discrete Applied Mathematics 156, 2270–2278 (2008)
Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential parametrized algorithms on bounded-genus graphs and h-minor-free graphs. Journal of the ACM 52(6), 866–893 (2005)
Djidjev, H.N., Venkatesan, S.M.: Reduced constants for simple cycle graph separation. Acta Informatica 34, 231–243 (1997)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)
Fellows, M.R., Knauer, C., Nishimura, N., Ragde, P., Rosamond, F., Stege, U., Thilikos, D.M., Whitesides, S.: Faster Fixed-Parameter Tractable Algorithms for Matching and Packing Problems. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 311–322. Springer, Heidelberg (2004)
Figueroa, A., Bornemann, J., Jiang, T.: Clustering binary fingerprint vectors with missing values for DNA array data analysis. Journal of Computational Biology 11, 887–901 (2004)
Fisher, D.: The number of triangles in a K 4-free graph. Discrete Mathematics 69, 203–205 (1988)
Fomin, F.V., Golovach, P., Thilikos, D.M.: Contraction Bidimensionality: The Accurate Picture. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 706–717. Springer, Heidelberg (2009)
Holyer, I.: The NP-completeness of some edge-partition problems. SIAM Journal on Computing 10(4), 713–717 (1981)
Mathieson, L., Prieto, E., Shaw, P.: Packing edge disjoint triangles: A parameterized view. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 127–137. Springer, Heidelberg (2004)
Mujuni, E., Rosamond, F.: Parameterized complexity of the clique partition problem. In: Proceedings of the 14th Computing: Australian Theory Symposium (CATS 2008), Conferences in Research and Practice in Information Technology, vol. 77, pp. 75–78 (2008)
Niedermeier, R.: Invitation to fixed parameter algorithms. Oxford University Press, U.K (2006)
Niedermeier, R., Rossmanith, P.: Upper Bounds for Vertex Cover Further Improved. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 561–570. Springer, Heidelberg (1999)
Orlin, J.: Contentment in graph theory: covering graphs with cliques. Indagationed Mathematicae 39, 406–424 (1977)
Schmidt, J.P., Siegel, A.: The spatial complexity of oblivious k-probe hash functions. SIAM Journal on Computing 19(5), 775–786 (1990)
Shaohan, M., Wallis, W.D., Lin, W.J.: The complexity of the clique partition number problem. Congressus Numerantium 67, 56–66 (1988); Proceedings of the 19th Southeastern Conference on Combinatorics, Graph Theory and Computing
Wu, X., Lin, Y., Fleischer, R.: Research of fixed parameter algorithm for clique partition problem. Computer Engineering 37(11), 92–93 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fleischer, R., Wu, X. (2011). Edge Clique Partition of K 4-Free and Planar Graphs. In: Akiyama, J., Bo, J., Kano, M., Tan, X. (eds) Computational Geometry, Graphs and Applications. CGGA 2010. Lecture Notes in Computer Science, vol 7033. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24983-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-24983-9_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24982-2
Online ISBN: 978-3-642-24983-9
eBook Packages: Computer ScienceComputer Science (R0)