Abstract
Utilizing multimodal features to describe multimedia data is a natural way for accurate pattern recognition. However, how to deal with the complex relationships caused by the tremendous multimodal features and the curse of dimensionality are still two crucial challenges. To solve the two problems, a new multimodal features integration method is proposed. Firstly, a so-called Feature Relationships Hypergraph (FRH) is proposed to model the high-order correlations among the multimodal features. Then, based on FRH, the multimodal features are clustered into a set of low-dimensional partitions. And two types of matrices, the inter-partition matrix and intra-partition matrix, are computed to quantify the inter- and intra- partition relationships. Finally, a multi-class boosting strategy is developed to obtain a strong classifier by combining the weak classifiers learned from the intra- partition matrices. The experimental results on different datasets validate the effectiveness of our approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bach, F.R., Lanckriet, G.R.G., Jordan, M.I.: Multiple kernel learning, conic duality, and the SMO algorithm. In: Proc. of ICML (2004)
Gehler, P., Nowozin, S.: On Feature Combination for Multiclass Object Classification. In: Proc. of ICCV (2009)
Xia, T., Tao, D., Mei, T., Zhang, Y.: On Combining Classifier. IEEE TPAMI 17(10), 226–239 (1998)
Wu, Y., Chang, E.Y., Chang, K.C., Smith, J.R.: Optimal multimodal fusion for multimedia data analysis. In: Proc. of ACM Mulitmedia (2004)
Zhou, D., Huang, J., Scholkopf, B.: Learning with hypergraphs: Clustering, Classification, and embedding. In: Proc. of NIPS (2006)
Liu, H., Hussain, F., Tan, C.L., Dash, M.: Discretization: An enabling technique. In: Data Mining and Knowledge Discovery, pp. 393–423 (2002)
Wolsey, L.A., Nemhauser, G.L.: Integer and Combinatorial Optimization. John Wiley (1998)
MacKay, D.: Information Theory, Inference and Learning Algorithms. Cambridge University Press (2003)
Gärtner, T., Flach, P.A., Wrobel, S.: On Graph Kernels: Hardness Results and Efficient Alternatives. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 129–143. Springer, Heidelberg (2003)
Long, B., Xu, X., Zhang, Z., Yu, P.S.: Community learning by graph approximation. In: Proc. of ICDM, pp. 232–241 (2007)
Cai, D., He, X., Zhou, K., Han, J., Bao, H.: Locality Sensitive Discriminant Analysis. In: Proc. of IJCAI, pp. 1713–1726 (2007)
Zhang, L., Song, M., Li, N., Bu, J., Chen, C.: Feature Selection for Fast Speech Emotion Recognition. In: Proc. of ACM Multimedia, pp. 753–756 (2009)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley-Interscience (2000)
Zhou, X., Bhanu, B.: Integrating Face and Gait for Human Recognition. In: Proc. of CVPRW (2006)
Sun, Z.: Adaptation For Multiple Cue Integration. In: Proc. of CVPR (2003)
Zhou, X., Bhanu, B.: Feature fusion of side face and gait for video-based human identification. Pattern Recognition 41(3), 778–795 (2008)
Porway, J., Wang, K., Yao, B., Zhu, S.C.: Scale-invariant shape features for recognition of object categories. In: Proc. of ICCV (2004)
Bosch, A., Zisserman, A., Mun, X.: Representing shape with a spatial pyramid kernel. In: Proc. of CIVR (2007)
Nie, F., Xiang, S., Jia, Y., Zhang, C., Yan, S.: Trace Ratio Criterion for Feature Selection. In: Proc. of AAAI (2008)
Vishwanathan, S.V.N., Sun, Z., Ampornpunt, N., Varma, M.: Multiple Kernel Learning and the SMO Algorithm. In: Proc. of NIPS (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, L. et al. (2011). Feature Relationships Hypergraph for Multimodal Recognition. In: Lu, BL., Zhang, L., Kwok, J. (eds) Neural Information Processing. ICONIP 2011. Lecture Notes in Computer Science, vol 7062. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24955-6_70
Download citation
DOI: https://doi.org/10.1007/978-3-642-24955-6_70
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24954-9
Online ISBN: 978-3-642-24955-6
eBook Packages: Computer ScienceComputer Science (R0)