Abstract
Nowadays, multimedia data, especially image, are of increasing number. Content-based image retrieval system is becoming an important tool to assist user in managing his/her collection of images. This work presents a development of an image search system for a particular image database containing various types of images. We present a study of visual descriptors for this database and a simple strategy to speed-up the retrieval process. We also present a relevance feedback technique based on semi-supervised learning technique. Experimental result of the proposed system seems promising.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., Gorkani, M., Hafner, J., Lee, D., Petkovic, D., Steele, D., Yanker, P.: Query by image and video content: The qbic system. IEEE Computer 28(9), 23–32 (1995)
Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary pattern. IEEE Transactions on Pattern Analysis and Machine Intelligence (2002)
Pass, G., Zabih, R., Miller, J.: Comparing images using color coherence vectors. In: Proceedings of the ACM Multimedia (1996)
Smith, J.R., Chang, S.F.: Query by color regions using visualseek content-based visual query system. In: Proceedings of the ACM Multimedia (1996)
Vasconcelos, N.: From pixels to semantic spaces: Advances in content-based image retrieval. IEEE Computer, 20–26 (2008)
Viola, P., Jones, M.: Robust real-time face detection. International Journal of Computer Vision 57(2), 137–154 (2004)
Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: Advance in Neural Information Processing Systems, NIPS (2008)
Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using gaussian fields and harmonic functions. In: Proceedings of the International Conference on Machine Learning, ICML (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Marukatat, S. (2011). Development of a Search System for Heterogeneous Image Database. In: Theeramunkong, T., Kunifuji, S., Sornlertlamvanich, V., Nattee, C. (eds) Knowledge, Information, and Creativity Support Systems. Lecture Notes in Computer Science(), vol 6746. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24788-0_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-24788-0_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24787-3
Online ISBN: 978-3-642-24788-0
eBook Packages: Computer ScienceComputer Science (R0)