A Study on Convex Optimization Approaches to Image Fusion | SpringerLink
Skip to main content

A Study on Convex Optimization Approaches to Image Fusion

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6667))

Abstract

Image fusion is an imaging technique to visualize information from multiple images in one single image, which is widely used in remote sensing, medical imaging etc. In this work, we study two variational approaches to image fusion which are closely related to the standard TV-L 2 and TV-L 1 image approximation methods. We investigate their convex optimization models under the perspective of primal and dual and propose the associated new image decompositions. In addition, we consider the TV-L 1 based image fusion approach and study the problem of fusing two discrete-constrained images \(f_1(x) \in \mathcal{L}_1\) and \(f_2(x) \in \mathcal{L}_2\), where \(\mathcal{L}_1\) and \(\mathcal{L}_2\) are the sets of linearly-ordered discrete values. We prove that the TV-L 1 based image fusion actually gives rise to an exact convex relaxation to the corresponding nonconvex image fusion given the discrete-valued constraint \(u(x) \in \mathcal{L}_1 \cup \mathcal{L}_2\). This extends the results for the global optimization of the discrete-constrained TV-L 1 image approximation [7,30] to the case of image fusion. The proposed dual models also lead to new fast and reliable algorithms in numerics, based on modern convex optimization techniques. Experiments of medical imaging, remote sensing and multi-focusing visibly show the qualitive differences between the two studied variational models of image fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aiazzi, B., Alparone, L., Baronti, S., Garzelli, A.: Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis. IEEE Geoscience and Remote Sensing 40(10), 2300–2312 (2002)

    Article  Google Scholar 

  2. Aujol, J.-F., Gilboa, G., Chan, T.F., Osher, S.: Structure-texture image decomposition - modeling, algorithms, and parameter selection. International Journal of Computer Vision 67(1), 111–136 (2006)

    Article  MATH  Google Scholar 

  3. Bae, E., Yuan, J., Tai, X.C., Boykov, Y.: A fast continuous max-flow approach to non-convex multilabeling problems. Technical Report CAM10-62, UCLA (2010)

    Google Scholar 

  4. Bertsekas, D.P.: Constrained optimization and Lagrange multiplier methods. Academic Press Inc., New York (1982)

    MATH  Google Scholar 

  5. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE PAMI 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  6. Chambolle, A.: An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision 20(1-2), 89–97 (2004)

    MATH  MathSciNet  Google Scholar 

  7. Chan, T.F., Esedoḡlu, S.: Aspects of total variation regularized L1 function approximation. SIAM J. Appl. Math. 65(5), 1817–1837 (2005) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  10. Das, A., Revathy, K.: A comparative analysis of image fusion techniques for remote sensed images. In: World Congress on Engineering, pp. 639–644 (2007)

    Google Scholar 

  11. Ekeland, I., Téman, R.: Convex analysis and variational problems. Society for Industrial and Applied Mathematics, Philadelphia (1999)

    Book  Google Scholar 

  12. Fan, K.: Minimax theorems. Proc. Nat. Acad. Sci. U.S.A. 39, 42–47 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  13. Giusti, E.: Minimal surfaces and functions of bounded variation. Australian National University, Canberra (1977)

    MATH  Google Scholar 

  14. Ishikawa, H.: Exact optimization for markov random fields with convex priors. IEEE PAMI 25, 1333–1336 (2003)

    Article  Google Scholar 

  15. Kluckner, S., Pock, T., Bischof, H.: Exploiting redundancy for aerial image fusion using convex optimization. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) DAGM 2010. LNCS, vol. 6376, pp. 303–312. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Li, H., Manjunath, B.S., Mitra, S.K.: Multisensor image fusion using the wavelet transform. Graphical Models and Image Processing 57(3), 235–245 (1995)

    Article  Google Scholar 

  17. Meyer, Y.: Oscillating patterns in image processing and nonlinear evolution equations. University Lecture Series, vol. 22. American Mathematical Society, Providence (2001); The fifteenth Dean Jacqueline B. Lewis memorial lectures

    MATH  Google Scholar 

  18. Nez, J., Otazu, X., Fors, O., Prades, A., Pal‘a, V., Arbiol, R.: Multiresolution-based image fusion with additive wavelet decomposition. IEEE Trans. On Geoscience And Remote Sensing 37(3), 1204–1211 (1999)

    Article  Google Scholar 

  19. Pajares, G., de la Cruz, J.M.: A wavelet-based image fusion tutorial. Pattern Recognition 37(9), 1855–1872 (2004)

    Article  Google Scholar 

  20. Piella, G.: Image fusion for enhanced visualization: A variational approach. International Journal of Computer Vision 83(1), 1–11 (2009)

    Article  Google Scholar 

  21. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. of Oper. Res. 1, 97–116 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  23. Schowengerdt, R.A.: Remote Sensing: Models and Methods for Image Processing, 3rd edn. Elsevier, Amsterdam (2007)

    Google Scholar 

  24. Sohn, M.-J., Lee, D.-J., Yoon, S.W., Lee, H.R., Hwang, Y.J.: The effective application of segmental image fusion in spinal radiosurgery for improved targeting of spinal tumours. Acta Neurochir 151, 231–238 (2009)

    Article  Google Scholar 

  25. Wang, W.-W., Shui, P.-L., Feng, X.-C.: Variational models for fusion and denoising of multifocus images. IEEE Signal Processing Letters 15, 65–68 (2008)

    Article  Google Scholar 

  26. Wang, Z., Ziou, D., Armenakis, C., Li, D., Li, Q.: A comparative analysis of image fusion methods. IEEE Geo. and Res. 43(6), 1391–1402

    Google Scholar 

  27. Yang, L., Guo, B.L., Ni, W.: Multimodality medical image fusion based on multiscale geometric analysis of contourlet transform. Neurocomputing 72, 203–211 (2008)

    Article  Google Scholar 

  28. Yuan, J., Bae, E., Tai, X.-C., Boykov, Y.: A continuous max-flow approach to potts model. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 379–392. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  29. Yuan, J., Bae, E., Tai, X.-C.: A study on continuous max-flow and min-cut approaches. In: CVPR 2010, pp. 2217–2224 (2010)

    Google Scholar 

  30. Yuan, J., Shi, J., Tai, X.-C.: A convex and exact approach to discrete constrained tv-l1 image approximation. Technical Report CAM-10-51, UCLA (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yuan, J., Shi, J., Tai, XC., Boykov, Y. (2012). A Study on Convex Optimization Approaches to Image Fusion. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2011. Lecture Notes in Computer Science, vol 6667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24785-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24785-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24784-2

  • Online ISBN: 978-3-642-24785-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics