Spiking Neural P System Simulations on a High Performance GPU Platform | SpringerLink
Skip to main content

Spiking Neural P System Simulations on a High Performance GPU Platform

  • Conference paper
Algorithms and Architectures for Parallel Processing (ICA3PP 2011)

Abstract

In this paper we present our results in adapting a Spiking Neural P system (SNP system) simulator to a high performance graphics processing unit (GPU) platform. In particular, we extend our simulations to larger and more complex SNP systems using an NVIDIA Tesla C1060 GPU. The C1060 is manufactured for high performance computing and massively parallel computations, matching the maximally parallel nature of SNP systems. Using our GPU accelerated simulations we present speedups of around 200× for some SNP systems, compared to CPU only simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cabarle, F., Adorna, H., Martínez-del-Amor, M.A.: An Improved GPU Simulator For Spiking Neural P Systems. Accepted in the IEEE Sixth International Conference on Bio-Inspired Computing: Theories and Applications, Penang, Malaysia (September 2011)

    Google Scholar 

  2. Cabarle, F., Adorna, H., Martínez-del-Amor, M.A.: A Spiking Neural P system simulator based on CUDA. Accepted in the Twelfth International Conference on Membrane Computing, Paris, France (August 2011)

    Google Scholar 

  3. Cecilia, J.M., García, J.M., Guerrero, G.D., Martínez-del-Amor, M.A., Pérez-Hurtado, I., Pérez-Jiménez, M.J.: Simulating a P system based efficient solution to SAT by using GPUs. Journal of Logic and Algebraic Programming 79(6), 317–325 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cecilia, J.M., García, J.M., Guerrero, G.D., Martínez-del-Amor, M.A., Pérez-Hurtado, I., Pérez-Jiménez, M.J.: Simulation of P systems with active membranes on CUDA. Briefings in Bioinformatics 11(3), 313–322 (2010)

    Article  Google Scholar 

  5. Chen, H., Ionescu, M., Ishdorj, T.-O., Păun, A., Păun, G., Pérez-Jiménez, M.: Spiking neural P systems with extended rules: universality and languages. Natural Computing: an International Journal 7(2), 147–166 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ciobanu, G., Wenyuan, G.: P Systems Running on a Cluster of Computers. In: Martín-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2003. LNCS, vol. 2933, pp. 123–139. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Díaz, D., Graciani, C., Gutiérrez, M.A., Pérez-Hurtado, I., Pérez-Jiménez, M.J.: Software for P systems. In: Păun, G., Rozenberg, G., Salomaa, A. (eds.) The Oxford Handbook of Membrane Computing, ch. 17, pp. 437–454. Oxford University Press, Oxford (2009)

    Google Scholar 

  8. Fatahalian, K., Sugerman, J., Hanrahan, P.: Understanding the efficiency of GPU algorithms for matrix-matrix multiplication. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware (HWWS 2004), pp. 133–137. ACM, NY (2004)

    Chapter  Google Scholar 

  9. Garland, M., Kirk, D.B.: Understanding throughput-oriented architectures. Communications of the ACM 53(11), 58–66 (2010)

    Article  Google Scholar 

  10. Harris, M.: Mapping computational concepts to GPUs. In: ACM SIGGRAPH 2005 Courses, NY, USA (2005)

    Google Scholar 

  11. Ionescu, M., Păun, G., Yokomori, T.: Spiking Neural P Systems. Journal Fundamenta Informaticae 71(2,3), 279–308 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Kirk, D., Hwu, W.: Programming Massively Parallel Processors: A Hands On Approach, 1st edn. Morgan Kaufmann, MA (2010)

    Google Scholar 

  13. Klöckner, A., Pinto, N., Lee, Y., Catanzaro, B., Ivanov, P., Fasih, A.: PyCUDA: GPU Run-Time Code Generation for High-Performance Computing. Scientific Computing Group, Brown University, RI, USA (2009)

    Google Scholar 

  14. Nguyen, V., Kearney, D., Gioiosa, G.: A Region-Oriented Hardware Implementation for Membrane Computing Applications and Its Integration into Reconfig-P. In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC 2009. LNCS, vol. 5957, pp. 385–409. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. NVIDIA corporation, NVIDIA CUDA C programming guide, version 3.0. NVIDIA, CA, USA (2010)

    Google Scholar 

  16. Păun, G., Ciobanu, G., Pérez-Jiménez, M. (eds.): Applications of Membrane Computing. Natural Computing Series. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  17. Stallings, W.: Operating systems: internals and design principles, 6th edn. Pearson/Prentice Hall, NJ, USA (2009)

    Google Scholar 

  18. Zeng, X., Adorna, H., Martínez-del-Amor, M.A., Pan, L., Pérez-Jiménez, M.: Matrix Representation of Spiking Neural P Systems. In: Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds.) CMC 2010. LNCS, vol. 6501, pp. 377–391. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cabarle, F.G., Adorna, H., Martínez-del-Amor, M.A., Pérez-Jiménez, M.J. (2011). Spiking Neural P System Simulations on a High Performance GPU Platform. In: Xiang, Y., Cuzzocrea, A., Hobbs, M., Zhou, W. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2011. Lecture Notes in Computer Science, vol 7017. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24669-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24669-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24668-5

  • Online ISBN: 978-3-642-24669-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics