Classification of Semantic Concepts to Support the Analysis of the Inter-cultural Visual Repertoires of TV News Reviews | SpringerLink
Skip to main content

Classification of Semantic Concepts to Support the Analysis of the Inter-cultural Visual Repertoires of TV News Reviews

  • Conference paper
KI 2011: Advances in Artificial Intelligence (KI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7006))

Included in the following conference series:

Abstract

TV news reviews are of strong interest in media and communication sciences, since they indicate national and international social trends. To identify such trends, scientists from these disciplines usually work with manually annotated video data. In this paper, we investigate if the time-consuming process of manual annotation can be automated by using the current pattern recognition techniques. To this end, a comparative study on different combinations of local and global features sets with two examples of the pyramid match kernel is conducted. The performance of the classification of TV new scenes is measured. The classes are taken from a coding scheme that is the result of an international discourse in media and communication sciences. For the classification of studio vs. non-studio, football vs. ice hockey, computer graphics vs. natural scenes and crowd vs. no crowd, recognition rates between 80 and 90 percent could be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Stommel, M., Duemcke, M., Herzog, O.: Classification of Semantic Concepts to Support the Analysis of the Inter-Cultural Visual Repertoires of TV News Reviews. Technical Report 58, Center for Computing and Communication Technologies, University Bremen, Germany (2011)

    Google Scholar 

  2. Ludes, P.: Visual Hegemonies: An Outline = Volume 1 of The World Language of Key Visuals: Computer Sciences, Humanities, Social Sciences. LIT, Muenster (2005) (Translations into Portuguese in 2007 and Chinese in 2008)

    Google Scholar 

  3. Hanitzsch, T.: Codebook for Content Analysis Foreign TV News Project. Worlds of Journalisms Project (February 2010)

    Google Scholar 

  4. Dorai, C., Venkatesh, S.: Bridging the Semantic Gap in Content Management Systems: Computational Media Aesthetics. In: Computational Semiotics (COSIGN), pp. 94–99 (2001)

    Google Scholar 

  5. Smeaton, A.F., Over, P., Kraaij, W.: High level feature detection from video in TRECVid: a 5-year retrospective of achievements. In: Divakaran, A. (ed.) Multimedia Content Analysis, Theory and Applications. Springer, Heidelberg (2008)

    Google Scholar 

  6. Hauptmann, A., Lin, W.H., Yan, R.: How Many High-level Concepts Will Fill the Semantic Gap in News Video Retrieval? In: Proceedings of ACM International Conference on Image and Video Retrieval, pp. 627–634 (2007)

    Google Scholar 

  7. Garg, R., Du, H., Seitz, S.M., Snavely, N.: The Dimensionality of Scene Appearance. In: IEEE International Conference on Computer Vision, ICCV (2009)

    Google Scholar 

  8. Ke, Y., Sukthankar, R.: PCA-SIFT: A More Distinctive Representation for Local Image Descriptors. In: Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 506–513 (2004)

    Google Scholar 

  9. Jain, A.K., Duin, R., Mao, J.: Statistical Pattern Recognition: A Review. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(1), 4–37 (2000)

    Article  Google Scholar 

  10. Stommel, M., Herzog, O.: Sift-based object recognition with fast alphabet creation and reduced curse of dimensionality. In: Int’l Conf. on Image and Vision Computing New Zealand, IVCNZ (2009)

    Google Scholar 

  11. Crandall, D.J., Felzenszwalb, P.F., Huttenlocher, D.P.: Spatial Priors for Part-Based Recognition Using Statistical Models. In: Computer Vision and Pattern Recognition (CVPR), pp. 10–17 (2005)

    Google Scholar 

  12. Stommel, M., Kuhnert, K.D.: Visual Alphabets on Different Levels of Abstraction for the Recognition of Deformable Objects. In: Hancock, E.R., Wilson, R.C., Windeatt, T., Ulusoy, I., Escolano, F. (eds.) SSPR&SPR 2010. LNCS, vol. 6218, pp. 213–222. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Grauman, K., Darrell, T.: The Pyramid Match Kernel: Discriminative Classification with Sets of Image Features. In: IEEE International Conference on Computer Vision (ICCV), vol. 2, pp. 1458–1465 (2005)

    Google Scholar 

  14. Grauman, K., Darrell, T.: Approximate correspondences in high dimensions. In: Advances in Neural Information Processing Systems, NIPS (2006)

    Google Scholar 

  15. Bay, H., Ess, A., Tuytelaars, T., van Gool, L.: SURF: Speeded Up Robust Features. Computer Vision and Image Understanding (CVIU) 110(3), 346–359 (2006)

    Article  Google Scholar 

  16. Forssen, P.E.: Maximally stable colour regions for recognition and matching. In: Computer Vision and Pattern Recognition, CVPR (2007)

    Google Scholar 

  17. Mikolajczyk, K., Schmid, C.: An Affine Invariant Interest Point Detector. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 128–142. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  18. Freeman, W.H., Adelson, E.H.: The design and use of steerable filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 891–906 (1991)

    Article  Google Scholar 

  19. Belongie, S., Mori, G., Malik, J.: Matching with shape contexts. In: IEEE Workshop on Content-based access of Image and Video-Libraries (CBAIVL), vol. 13, pp. 20–26 (2000)

    Google Scholar 

  20. Vezhnevets, V., Sazonov, V., Andreeva, A.: A Survey on Pixel-Based Skin Color Detection Techniques. In: Proc. Graphicon-2003, vol. 13, pp. 85–92 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stommel, M., Duemcke, M., Herzog, O. (2011). Classification of Semantic Concepts to Support the Analysis of the Inter-cultural Visual Repertoires of TV News Reviews. In: Bach, J., Edelkamp, S. (eds) KI 2011: Advances in Artificial Intelligence. KI 2011. Lecture Notes in Computer Science(), vol 7006. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24455-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24455-1_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24454-4

  • Online ISBN: 978-3-642-24455-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics