Hybrid GA-Based Improvement Heuristic with Makespan Criterion for Flow-Shop Scheduling Problems | SpringerLink
Skip to main content

Hybrid GA-Based Improvement Heuristic with Makespan Criterion for Flow-Shop Scheduling Problems

  • Conference paper
ENTERprise Information Systems (CENTERIS 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 220))

Included in the following conference series:

Abstract

In the paper, we proposed a hybrid improvement heuristic for permutation flow-shop problem based on the idea of evolutionary algorithm. The approach also employs constructive heuristic that gives a good initial solution. Hybrid GA-based improvement heuristic is applied in conjunction with three well-known constructive heuristics, namely CDS, Gupta’s algorithm and Palmer’s Slope Index. We tested our approach on Reeves’ benchmark set of 21 problem instances range from 20 to 75 jobs and 5 to 20 machines. Subsequently, we compared obtained results to the best-known upper-bound solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pinedo, M.: Scheduling: Theory, Algorithms and Systems. Springer, New Jersey (2008)

    MATH  Google Scholar 

  2. Gupta, J.N.D.: Analysis of Combinatorial Approach to Flowshop Scheduling Problems (1975)

    Google Scholar 

  3. Johnson, S.M.: Optimal Two and Three Stage Production Schedules with Set-Up Times. Naval Research Logistics Quarterly 1, 61–68 (1954)

    Article  MATH  Google Scholar 

  4. Garey, M.R.D., Johnson, D.S., Sethi, R.: The Complexity of Flowshop and Jobshop Scheduling. Mathematics of Operations Research 1, 117–129 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  5. Conway, R.W., Maxwell, W.L., Miller, L.W.: Theory of Scheduling. Addison-Wesley, Reading (1967)

    MATH  Google Scholar 

  6. Hejazi, S.R., Saghafian, S.: Flowshop Scheduling Problems with Makespan Criterion: A Review. International Journal of Production Research 43(14), 2895–2929 (2005)

    Article  MATH  Google Scholar 

  7. Palmer, D.S.: Sequencing Jobs through a Multi-Stage Process in the Minimum Total Time - A Quick Method of Obtaining a Near Optimum. Opers. Res. Q 16, 101–107 (1965)

    Article  Google Scholar 

  8. Campbell, H.G., Dudek, R.A., Smith, M.L.: A Heuristic Algorithm for the n Job, m Machine Sequencing Problem. Management Science 16(10), 630–637 (1970)

    Article  MATH  Google Scholar 

  9. Dannenbring, D.G.: An Evaluation of Flow Shop Sequencing Heuristics. Management Science 23(11), 1174–1182 (1977)

    Article  MATH  Google Scholar 

  10. Brucker, P., Jurisch, B., Sievers, B.: A Branch and Bound Algorithm for the Job Shop Scheduling Problem. Discrete Applied Mathematics 49(1), 109–127 (1994)

    MathSciNet  MATH  Google Scholar 

  11. Gendreau, M., Laporte, G., Semet, F.: A Tabu Search Heuristic for the Undirected Selective Travelling Salesman Problem. European Journal of Operational Research 106(2-3), 539–545 (1998)

    Article  MATH  Google Scholar 

  12. Murata, T., Ishibuchi, H., Tanaka, H.: Genetic algorithms for flowshop scheduling problems. Computers & Industrial Engineering 30(4), 1061–1071 (1996)

    Article  Google Scholar 

  13. Balas, E., Vazacopoulos, A.: Guided Local Search with Shifting Bottleneck for Job Shop Scheduling. Management Science 44(2), 262–275 (1998)

    Article  MATH  Google Scholar 

  14. Blum, C., Sampels, M.: An Ant Colony Optimization Algorithm for Shop Scheduling Problems. Journal of Mathematical Modelling and Algorithms 3(3), 285–308 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Page, E.S.: An approach to scheduling of jobs on the machines. J. Royal Stat. Soc. 23, 484–492 (1961)

    MathSciNet  Google Scholar 

  16. Gupta, J.N.D.: Heuristic Algorithms for Multistage Flowshop Scheduling Problem. AIIE Transactions 4(1), 11–18 (1972)

    Article  Google Scholar 

  17. Nawaz, M.E., Enscore, I., Ham, I.: A Heuristic Algorithm for the m Machine, n Job Flow Shop Sequence Problem. OMEGA 11(1), 91–95 (1983)

    Article  Google Scholar 

  18. Allahverdi, A., Ng, C.T., Cheng, T.C.E., Kovalyov, M.Y.: A Survey of Scheduling Problems with Setup Times or Costs. European Journal of Operational Research 187, 985–1032 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hendizadeh, S.H., ElMekkawy, T.Y., Wang, G.G.: Bi-Criteria Scheduling of a Flowshop Manufacturing Cell with Sequence Dependent Setup Time. European Journal of Industrial Engineering 1, 391–413 (2007)

    Article  Google Scholar 

  20. Zobolas, G.I., Tarantilis, C.D., Ioannou, G.: Minimizing Makespan in Permutation Flow Shop Scheduling Problems Using a Hybrid Metaheuristic Algorithm. Computers and Operations Research 36(4), 1249–1267 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ogbu, F.A., Smith, D.K.: The Application of the Simulated Annealing Algorithm to the Solution of the n/m/Cmax Flowshop Problem. Computers & Operations Research 17, 3243–3253 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Taillard, E.: Benchmarks for basic scheduling problems. European Journal of Operational Research 64, 278–285 (1993)

    Article  MATH  Google Scholar 

  23. Nagar, A., Heragu, S.S., Haddock, J.: A Combined Branch-and-Bound and Genetic Algorithm Based Approach for a Flowshop-Scheduling Problem. Annal. Oper. Res. 63, 397–414 (1996)

    Article  MATH  Google Scholar 

  24. Neppalli, V.R., Chen, C.L., Gupta, J.N.D.: Genetic Algorithms for the Two-Stage Bicriteria Flowshop Problem. Eur. J. Oper. Res. 95, 356–373 (1996)

    Article  MATH  Google Scholar 

  25. Engin, O., Doyen, A.: A New Approach to Solve Hybrid Flow Shop Scheduling Problems by Artificial Immune System. Future Generation Computer Systems 20, 1083–1095 (2004)

    Article  Google Scholar 

  26. Ribas, R., Leisten, J.M.: Review and Classification of Hybrid Flow Shop Scheduling Problems from a Production System and a Solutions Procedure Perspective. Computers and Operations Research 37(8), 1439–1454 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Semančo, P., Modrák, V. (2011). Hybrid GA-Based Improvement Heuristic with Makespan Criterion for Flow-Shop Scheduling Problems. In: Cruz-Cunha, M.M., Varajão, J., Powell, P., Martinho, R. (eds) ENTERprise Information Systems. CENTERIS 2011. Communications in Computer and Information Science, vol 220. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24355-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24355-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24354-7

  • Online ISBN: 978-3-642-24355-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics