Cryptanalysis of RSA with Small Prime Combination | SpringerLink
Skip to main content

Cryptanalysis of RSA with Small Prime Combination

  • Conference paper
Information Security and Cryptology - ICISC 2010 (ICISC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6829))

Included in the following conference series:

  • 1238 Accesses

Abstract

Let N = pq be RSA modulus where primes p and q are of the same bit-length. If \(|\rho q - p| = N^{\frac{1}{4}+\gamma}\) where ρ is a known constant satisfying 1 ≤ ρ ≤ 2 and the constant γ satisfies \(0< \gamma< \frac{1}{4}\), we show the factorization attack on N and weak key attack against RSA modulus N. We present algorithms to find the factorization of N in time O(N γ + ε) by some square root attacks, such as the baby-step giant-step method and a more sophisticated square root attack. Using similar techniques of Blömer and May (PKC 2004), we present a weak key attack and find new weak keys over the work of Maitra and Sarkar (ISC 2008).

This research is partially supported by Project 973 (no: 2007CB807902) and the science and technology foundation of the ministry of education (no. 210123) and the natural science foundation in Shandong province (no: Y2008A22) in China.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blömer, J., May, A.: A generalized wiener attack on RSA. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 1–13. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Coppersmith, D.: Small solutions to polynomial equations and low exponent RSA vulnerabilities. Journal of Cryptology 10(4), 223–260 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Crandall, R., Pomerance, C.: Prime Numbers, 2nd edn. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  4. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  5. Han, L.D., Xu, G.W.: Generalization of Some Attacks on RSA with Small Prime Combination and Small Private Exponent. In: 2009 Asia-Pacific Conference on Information Processing, vol. 1, pp. 445–449 (2009)

    Google Scholar 

  6. Lang, S.: Introduction to diophantine approximations. Addison-Wesley Pub. Co., Reading (1966)

    MATH  Google Scholar 

  7. Lewis, D.J. (ed.): Number Theory Institute 1969. Proceedings of Symposia in Pure Mathematics, vol. 20. American Mathematical Society, Providence RI (1971)

    Google Scholar 

  8. Maitra, S., Sarkar, S.: Revisiting Wiener’s attack - new weak keys in RSA. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 228–243. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Maitra, S., Sarkar, S.: Revisiting Wiener’s attack - new weak keys in RSA, http://eprint.iacr.org/2008/228.pdf

  10. Nguyen, P.Q.: Recent Trends in Cryptography. In: Luengo, I. (ed.) Public-Key Cryptanalysis. Contemporary Mathematics series, vol. 477, AMS-RSME (2009)

    Google Scholar 

  11. Pollard, J.M.: Monte Carlo methods for index computation \(\pmod p\). Math. Comp. 32, 918–924 (1978)

    MathSciNet  MATH  Google Scholar 

  12. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. of the ACM 21, 120–126 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Shanks, D.: Class number, a theory of factorization and genera. In: Lewis [7], pp. 415–440 (1971)

    Google Scholar 

  14. de Weger, B.: Cryptanalysis of RSA with small prime difference. Applicable Algebra in Engineering, Communication and Computing 13, 17–28 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meng, X. (2011). Cryptanalysis of RSA with Small Prime Combination. In: Rhee, KH., Nyang, D. (eds) Information Security and Cryptology - ICISC 2010. ICISC 2010. Lecture Notes in Computer Science, vol 6829. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24209-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24209-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24208-3

  • Online ISBN: 978-3-642-24209-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics