On Equivalence Classes of Boolean Functions | SpringerLink
Skip to main content

On Equivalence Classes of Boolean Functions

  • Conference paper
Information Security and Cryptology - ICISC 2010 (ICISC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6829))

Included in the following conference series:

  • 1282 Accesses

Abstract

In FSE 2010, Rønjom and Cid put forward a nonlinear equivalence for Boolean functions and demonstrated that many cryptographic properties are not invariant among functions within the same equivalence class by providing some special examples. Their paper presented the idea and many problems were left open.

In this paper, we investigate equivalence of Boolean functions more deeply using a new method and discuss the number of Boolean functions in each equivalence class. We investigate further the cryptographic properties including algebraic immunity, algebraic degree and nonlinearity of equivalence classes, and deduce tight bounds on them. We find that there are many equivalence classes of Boolean functions with optimum algebraic immunity, optimum algebraic degree and a good nonlinearity. Moreover, we discuss how to construct equivalence classes with desired properties and show that it is possible to construct practical Boolean functions such that their equivalence classes have guaranteed cryptographic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Carlet, C., Dalai, D.K., Gupta, K.C., Maitra, S.: Algebraic immunity for cryptographically significant Boolean functions: analysis and construction. IEEE Trans. Inf. Theory 52(7), 3105–3121 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Braeken, A., Preneel, B.: On the algebraic immunity of symmetric Boolean functions. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT 2005. LNCS, vol. 3797, pp. 35–48. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Dalai, D.K., Maitra, K.C., Maitra, S.: Cryptographically significant Boolean functions: Construction and analysis in terms of algebraic immunity. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 98–111. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Dalai, D.K., Maitra, S., Sarkar, S.: Baisc theory in construction of Boolean functions with maximum possible annihilator immunity. Des. Codes Cryptogr 40(1), 41–58 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Li, N., Qi, W.-F.: Construction and Analysis of Boolean Functions of 2t+1 Variables with Maximum Algebraic Immunity. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 84–98. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Pasalic, E.: Almost Fully Optimized Infinite Classes of Boolean Functions Resistant to (Fast) Algebraic Cryptanalysis. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 399–414. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Carlet, C., Feng, K.: An infinite class of balanced functions with optimal algebraic immunity, good immunity to fast algebraic attacks and good nonlinearity. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 425–440. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Tu, Z., Deng, Y.: A Conjecture on Binary String and its Application on constructing Boolean Functions of Optimal Algebraic Immunity. Des. Codes Cryptogr (2010), Online First Articles. doi:10.1007/s10623-010-9413-9

    Google Scholar 

  9. Carlet, C., Feng, K.: An Infinite Class of Balanced Vectorial Boolean Functions with Optimum Algebraic Immunity and Good Nonlinearity. In: Chee, Y.M., Li, C., Ling, S., Wang, H., Xing, C. (eds.) IWCC 2009. LNCS, vol. 5557, pp. 1–11. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Courtois, N.: Fast Algebraic attacks on stream ciphers with linear feedback. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Courtois, N., Bard, G.: Algebraic Cryptanalysis of the Data Encryption Standard. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887, pp. 152–169. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Courtois, N., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined systems of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267–287. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Armknecht, F., Krause, M.: Algebraic Attacks on Combiners with Memory. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 162–175. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Meier, W., Staffelbach, O.: Fast correlation attacks on stream ciphers. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 301–314. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  15. Johansson, T., Jönsson, F.: Fast Correlation Attacks through Reconstruction of Linear Polynomials. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 300–315. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Carlet, C.: On a weakness of the Tu-Deng function and its repair. Cryptology ePrint Archive 2009/606 (2009), http://eprint.iacr.org/

  17. Rønjom, S., Cid, C.: Nonlinear Equivalence of Stream Ciphers. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 40–54. Springer, Heidelberg (2010), http://www.isg.rhul.ac.uk/~ccid/publications/NL-equivalence.pdf

    Chapter  Google Scholar 

  18. Rothaus, O.S.: On bent functions. J. Comb. Theory A20(3), 300–305 (1976)

    Article  MATH  Google Scholar 

  19. Courtois, N., Meier, W.: Algebraic attacks on stream ciphers with linear feedback. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Wang, Q., Peng, J., Kan, H., Xue, X.: Constructions of Cryptographically Significant Boolean Functions Using Primitive Polynomials. IEEE Trans. Inf. Theory 56(6), 3048–3053 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, Q., Johansson, T.: A Note on Fast Algebraic Attacks and Higher Order Nonlinearities. In: Lai, X., Yung, M., Lin, D. (eds.) INSCRYPT 2010. LNCS, vol. 6584, pp. 404–414. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  22. Rizomiliotis, P.: On the security of the Feng-Liao-Yang Boolean functions with optimal algebraic immunity against fast algebraic attacks. Des. Codes Cryptogr, http://www.springerlink.com/content/yj27532v5481857v/

  23. Feng, K., Liao, Q., Yang, J.: Maximal values of generalized algebraic immunity. Des. Codes Cryptogr 50(2), 243–252 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, M., Lin, D.: Fast Algebraic Attacks and Decomposition of Symmetric Boolean Functions. ArXiv: 0910.4632v1 [cs.CR]

    Google Scholar 

  25. Kavut, S., Yucel, M.: Generalized Rotation Symmetric and Dihedral Symmetric Boolean Functions - 9 variable Boolean Functions with Nonlinearity 242. In: Boztaş, S., Lu, H.-F. (eds.) AAECC 2007. LNCS, vol. 4851, pp. 321–329. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  26. Lobanov, M.S.: Tight bounds between algebraic immunity and high-order nonlinearities. Diskretn. Anal. Issled. Oper 15(6), 34–47 (2008)

    MATH  Google Scholar 

  27. Carlet, C.: On the higher order nonlinearities of algebraic immune functions. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 584–601. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  28. Carlet, C., Mesnager, S.: Improving the Upper Bounds on the Covering Radii of Binary Reed-Muller Codes. IEEE Trans. Inf. Theory 53(1), 162–173 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Carlet, C.: Recursive Lower Bounds on the Nonlinearity Profile of Boolean Functions and Their Applications. IEEE Trans. Inf. Theory 54(3), 1262–1272 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lobanov, M.S.: Tight bounds between algebraic immunity and nonlinearities of high orders. Cryptology ePrint Archive 2007/444 (2007), http://eprint.iacr.org/

  31. Carlet, C.: On the Higher Order Nonlinearities of Boolean Functions and S-Boxes, and Their Generalizations. In: Golomb, S.W., Parker, M.G., Pott, A., Winterhof, A. (eds.) SETA 2008. LNCS, vol. 5203, pp. 345–367. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  32. Mesnager, S.: Improving the Lower Bound on the Higher Order Nonlinearity of Boolean Functions With Prescribed Algebraic Immunity. IEEE Trans. Inf. Theory 54(8), 3656–3662 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rønjom, S., Helleseth, T.: A New Attack on the Filter Generator. IEEE Trans. Inf. Theory 53(5), 1752–1758 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Q., Johansson, T. (2011). On Equivalence Classes of Boolean Functions. In: Rhee, KH., Nyang, D. (eds) Information Security and Cryptology - ICISC 2010. ICISC 2010. Lecture Notes in Computer Science, vol 6829. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24209-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24209-0_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24208-3

  • Online ISBN: 978-3-642-24209-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics