Evolutionary Detection of Berge and Nash Equilibria | SpringerLink
Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 387))

Abstract

The problem of equilibria detection in many-player games is computationally untractable by standard techniques. Generative relations represent an useful tool for equilibria characterization and evolutionary equilibria detection. The generative relation for k-Berge-Zhukovskii equilibrium is introduced. An evolutionary technique based on differential evolution capable to cope with hundred players is proposed. Experimental results performed on a multi-player version of Prisoner’s Dilemma indicate the effectiveness of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aumann, R.: Acceptable Points in General Cooperative n Person Games. In: Contributions to the Theory of Games. Annals of Mathematics Studies 40, vol. IV, pp. 287–324 (1959)

    Google Scholar 

  2. Aumann, R., Hart, S. (eds.): Handbook of Game Theory. Handbooks in Economics (11), vol. 1. North-Holland, Amsterdam (1992)

    MATH  Google Scholar 

  3. Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.) Proceedings of the Parallel Problem Solving from Nature VI Conference, Paris, France (2000)

    Google Scholar 

  4. Deb, K., Beyer, H.: Self-adaptive genetic algorithms with simulated binary crossover. Complex Systems 9, 431–454 (1995)

    Google Scholar 

  5. Lung, R.I., Dumitrescu, D.: Computing Nash Equilibria by Means of Evolutionary Computation. Int. J. of Computers, Communications & Control, 364–368 (2008)

    Google Scholar 

  6. Nash, J.F.: Non-cooperative games. Annals of Mathematics 54, 286–295 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  7. Nessah, R., Larbani, M., Tazdait, T.: A note on Berge equilibrium. Applied Mathematics Letters 20, 926–932 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Osborne, M.: An Introduction to Game Theory. Oxford University Press, New York (2004)

    Google Scholar 

  9. Thomsen, R.: Multimodal optimization using crowding-based differential evolution. In: Proceedings of the 2004 IEEE Congress on Evolutionary Computation, June 20-23, pp. 1382–1389. IEEE Press, Portland (2004)

    Google Scholar 

  10. Zhukovskii, V.I.: Linear Quadratic Differential Games. Naukova Doumka, Kiev (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gaskó, N., Dumitrescu, D., Lung, R.I. (2011). Evolutionary Detection of Berge and Nash Equilibria. In: Pelta, D.A., Krasnogor, N., Dumitrescu, D., Chira, C., Lung, R. (eds) Nature Inspired Cooperative Strategies for Optimization (NICSO 2011). Studies in Computational Intelligence, vol 387. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24094-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24094-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24093-5

  • Online ISBN: 978-3-642-24094-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics