Abstract
The behavior of biological individuals which efficiently deal with complex life problems represents an inspiration source in the design of meta-heuristics for solving optimization problems. The Cuckoo Search is such a meta-heuristic inspired by the behavior of cuckoos in search for the appropriate nest where to lay eggs. This paper investigates how the Cuckoo Search meta-heuristic can be adapted and enhanced to solve the problem of selecting the optimal solution in semantic Web service composition. To improve the performance of the cuckoo-inspired algorithm we define a 1-OPT heuristic which expands the search space in a controlled way so as to avoid the stagnation on local optimal solutions. The search space is modeled as an Enhanced Planning Graph, dynamically built for each user request. To identify the optimal solution encoded in the graph we define a fitness function which uses the QoS attributes and the semantic quality as selection criteria. The cuckoo-inspired method has been evaluated on a set of scenarios from the trip planning domain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc. of the Int. Conference on Neural Networks, USA, pp. 1942–1948 (1995)
Ming, C., Zhen-wu, W.: An Approach for Web Services Composition Based on QoS and Discrete Particle Swarm Optimization. In: Proc. of the 8th Int. Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel, Distributed Computing, China, pp. 37–41 (2007)
Pop, C.B., Chifu, V.R., Salomie, I., Dinsoreanu, M.: Immune-Inspired Method for Selecting the Optimal Solution in Web Service Composition. In: Lacroix, Z. (ed.) RED 2009. LNCS, vol. 6162, pp. 1–17. Springer, Heidelberg (2010)
Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, Pearson Education, Upper Saddle River, RJ (2003); ISBN: 0137903952
Wang, J., Hou, Y.: Optimal Web Service Selection based on Multi-Objective Genetic Algorithm. In: Proc. of the Int. Symposium on Computational Intelligence and Design, China, vol. 1, pp. 553–556 (2008)
Xu, J., Reiff-Marganiec, S.: Towards Heuristic Web Services Composition Using Immune Algorithm. In: Proc. of the Int. Conference on Web Services, China, pp. 238–245 (2008)
Yang, X.S., Deb, S.: Cuckoo search via Levy flights. In: Proc. of the World Congress on Nature and Biologically Inspired Computing, India, pp. 210–214 (2009)
Farrell, J.: Semantic Annotations for WSDL and XML Schema, http://www.w3.org/2002/ws/sawsdl/spec/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chifu, V.R., Pop, C.B., Salomie, I., Suia, D.S., Niculici, A.N. (2011). Optimizing the Semantic Web Service Composition Process Using Cuckoo Search. In: Brazier, F.M.T., Nieuwenhuis, K., Pavlin, G., Warnier, M., Badica, C. (eds) Intelligent Distributed Computing V. Studies in Computational Intelligence, vol 382. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24013-3_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-24013-3_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24012-6
Online ISBN: 978-3-642-24013-3
eBook Packages: EngineeringEngineering (R0)