Abstract
The study of discrete aggregation functions (those defined on a finite chain) with some kind of smoothness has been extensively developed in last years. Smooth t-norms and t-conorms, nullnorms and some kinds of uninorms, copulas and quasi-copulas have been characterized in this context. In this paper discrete aggregation functions with the kernel property (which implies the smoothness property) are investigated. Some properties and characterizations, as well as some construction methods for this kind of discrete aggregation functions are studied. It is also investigated when the marginal functions of a discrete kernel aggregation function fully determine it.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aguiló, I., Suñer, J., Torrens, J.: Matrix representation of discrete quasi-copulas. Fuzzy Sets and Systems 159, 1658–1672 (2008)
Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practicioners. Springer, Heidelberg (2007)
Calvo, T., Mayor, G., Mesiar, R. (eds.): Aggregation operators. New trends and applications, Studies in Fuzziness and Soft Computing, vol. 97. Physica-Verlag, Heidelberg (2002)
Calvo, T., Mesiar, R.: Stability of aggregation operators. In: Proceedings of EUSFLAT 2001, Leicester, pp. 475–478 (2001)
De Baets, B., Fodor, J., Ruiz-Aguilera, D., Torrens, J.: Idempotent uninorms on finite ordinal scales. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 17, 1–14 (2009)
Fodor, J.C.: Smooth associative operations on finite ordinal scales. IEEE Trans. on Fuzzy Systems 8, 791–795 (2000)
Fung, L., Fu, K.: An axiomatic approach to rational decision-making in fuzzy environment. In: Tanaka, K., Zadeh, L., Fu, K., Shimura, M. (eds.) Fuzzy Sets and Their Applications to Cognitive and Decision Processes, pp. 227–256. Academic Press, New York (1975)
Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation functions. In: The series: Encyclopedia of Mathematics and its Applications, vol. 127, Cambridge University Press, Cambridge (2009)
Kalicka, J.: On some construction methods for 1-Lipschitz aggregation functions. Fuzzy Sets and Systems 160, 726–732 (2009)
Klement, E.P., Kolesárová, A.: Extension to copulas and quasi-copulas as especial 1-Lipschitz aggregation operators. Kybernetika 41, 329–348 (2005)
Kolesárová, A.: 1-Lipschitz aggregation operators and quasi-copulas. Kybernetika 39, 615–629 (2003)
Kolesárová, A., Mayor, G., Mesiar, R.: Weighted ordinal means. Information Sciences 177, 3822–3830 (2007)
Kolesárová, A., Mordelová, J.: 1-Lipschitz and kernel aggregation operators. In: Proceedings of AGOP 2001, Oviedo, Spain, pp. 77–80 (2001)
Kolesárová, A., Mordelová, J., Muel, E.: Kernel aggregation operators and their marginals. Fuzzy sets and Systems 142, 35–50 (2004)
Kolesárová, A., Muel, E., Mordelová, J.: Construction of kernel aggregation operators from marginal values. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10, 37–49 (2002)
Mas, M., Mayor, G., Torrens, J.: t −Operators and uninorms on a finite totally ordered set. International Journal of Intelligent Systems 14, 909–922 (1999)
Mas, M., Monserrat, M., Torrens, J.: On left and right uninorms on a finite chain. Fuzzy Sets and Systems 146, 3–17 (2004)
Mas, M., Monserrat, M., Torrens, J.: Smooth aggregation functions on finite scales. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS (LNAI), vol. 6178, pp. 398–407. Springer, Heidelberg (2010)
Mayor, G., Suñer, J., Torrens, J.: Copula-like operations on finite settings. IEEE Transactions on Fuzzy Systems 13, 468–477 (2005)
Mayor, G., Torrens, J.: Triangular norms in discrete settings. In: Klement, E.P., Mesiar, R. (eds.) Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms, pp. 189–230. Elsevier, Amsterdam (2005)
Torra, V., Narukawa, Y.: Modeling decisions. Information fusion and aggregation operators. In: The series: Cognitive Technologies. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mas, M., Monserrat, M., Torrens, J. (2011). Discrete Kernel Aggregation Functions. In: Melo-Pinto, P., Couto, P., Serôdio, C., Fodor, J., De Baets, B. (eds) Eurofuse 2011. Advances in Intelligent and Soft Computing, vol 107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24001-0_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-24001-0_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24000-3
Online ISBN: 978-3-642-24001-0
eBook Packages: EngineeringEngineering (R0)