Evaluating Probabilistic Inference Techniques: A Question of “When,” not “Which” | SpringerLink
Skip to main content

Evaluating Probabilistic Inference Techniques: A Question of “When,” not “Which”

  • Conference paper
Scalable Uncertainty Management (SUM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6929))

Included in the following conference series:

  • 631 Accesses

Abstract

Historically, it has been claimed that one inference algorithm or technique, say A, is better than another, say B, based on the running times on a test set of Bayesian networks. Recent studies have instead focusing on identifying situations where A is better than B, and vice versa. We review two cases where competing inference algorithms (techniques) have been successfully applied together in unison to exploit the best of both worlds. Next, we look at recent advances in identifying structure and semantics. Finally, we present possible directions of future work in exploiting structure and semantics for faster probabilistic inference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Butz, C.J., Chen, J., Konkel, K., Lingras, P.: A formal comparison of variable elimination and arc reversal in Bayesian network inference. Intell. Dec. Analysis 3(3), 173–180 (2009)

    Google Scholar 

  2. Butz, C.J., Konkel, K., Lingras, P.: Join tree propagation utilizing both arc reversal and variable elimination. Intl. J. Approx. Rea. (2010) (in press)

    Google Scholar 

  3. Butz, C.J., Hua, S.: An improved Lazy-AR approach to Bayesian network inference. In: Proc. of Canadian Conference on Artificial Intelligence, pp. 183–194 (2006)

    Google Scholar 

  4. Butz, C.J., Hua, S., Konkel, K., Yao, H.: Join tree propagation with prioritized messages. Networks 55(4), 350–359 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Butz, C.J., Madsen, A.L., Williams, K.: Using four cost measures to determine arc reversal orderings. In: Proc. 11th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, pp. 110–121 (2011)

    Google Scholar 

  6. Butz, C.J., Yan, W.: The semantics of intermediate CPTs in variable elimination. In: Proc. 5th European Workshop on Probabilistic Graphical Models, pp. 41–49 (2010)

    Google Scholar 

  7. Butz, C.J., Yao, H., Hua, S.: A join tree probability propagation architecture for semantic modelling. J. Int. Info. Sys. 33(2), 145–178 (2009)

    Article  Google Scholar 

  8. Cooper, G.F.: The computational complexity of probabilistic inference using Bayesian belief networks. Art. Intel. 42(2-3), 393–405 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Castillo, E., Gutiérrez, J., Hadi, A.: Expert Systems and Probabilistic Network Models. Springer, New York (1997)

    Book  MATH  Google Scholar 

  10. Hájek, P., Havránek, T., Jiroušek, R.: Uncertain Information Processing in Expert Systems. CRC Press, Ann Arbor (1992)

    Google Scholar 

  11. Hansen, P.F., Pedersen, P.T.: Risk analysis of conventional and solo watch keeping. Research Report, Department of Naval Architecture and Offshore Engineering, Technical University of Denmark (1998)

    Google Scholar 

  12. Kjaerulff, U.B., Madsen, A.L.: Bayesian Networks and Influence Diagrams: a Guide to Construction and Analysis. Springer, New York (2008)

    Book  MATH  Google Scholar 

  13. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. The MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  14. Kristensen, K., Rasmussen, I.A.: The use of a Bayesian network in the design of a decision support system for growing malting barley without use of pesticides. Computers and Electronics in Agriculture 33, 192–217 (2002)

    Article  Google Scholar 

  15. Madsen, A.L., Jensen, F.V.: Lazy propagation: A junction tree inference algorithm based on lazy evaluation. Artif. Intell. 113(1-2), 203–245 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Madsen, A.L.: An empirical evaluation of possible variations of lazy propagation. In: Proc. 20th Conference on Uncertainty in Artificial Intelligence, pp. 366–373 (2004)

    Google Scholar 

  17. Madsen, A.L.: Variations over the message computation algorithm of lazy propagation. IEEE Trans. Sys. Man Cyb. B 36, 636–648 (2006)

    Article  Google Scholar 

  18. Madsen, A.L.: Improvements to message computation in lazy propagation. Intl. J. Approx. Rea. 51(5), 499–514 (2010)

    Article  MathSciNet  Google Scholar 

  19. Olmsted, S.: On representing and solving decision problems, Ph.D. thesis, Department of Engineering Economic Systems. Stanford University, Stanford, CA (1983)

    Google Scholar 

  20. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)

    MATH  Google Scholar 

  21. Shachter, R.: Evaluating influence diagrams. Oper. Res. 34(6), 871–882 (1986)

    Article  MathSciNet  Google Scholar 

  22. Shafer, G.: Probabilistic Expert Systems. Society for Industrial and Applied Mathematics (1996)

    Google Scholar 

  23. Wong, S.K.M., Butz, C.J., Wu, D.: On the implication problem for probabilistic conditional independency. IEEE Trans. Syst. Man Cybern., A 30(6), 785–805 (2000)

    Article  Google Scholar 

  24. Zhang, N.L.: Computational properties of two exact algorithms for Bayesian networks. Appl. Intell. 9(2), 173–184 (1998)

    Article  Google Scholar 

  25. Zhang, N.L., Poole, D.: A simple approach to Bayesian network computations. In: Proc. 10th Canadian Conference on Artificial Intelligence, pp. 171–178 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Butz, C.J. (2011). Evaluating Probabilistic Inference Techniques: A Question of “When,” not “Which”. In: Benferhat, S., Grant, J. (eds) Scalable Uncertainty Management. SUM 2011. Lecture Notes in Computer Science(), vol 6929. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23963-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23963-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23962-5

  • Online ISBN: 978-3-642-23963-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics