Logic Programming and Uncertainty | SpringerLink
Skip to main content

Logic Programming and Uncertainty

  • Conference paper
Scalable Uncertainty Management (SUM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6929))

Included in the following conference series:

Abstract

In recent years Logic programming based languages and features–such as rules and non-monotonic constructs–have become important in various knowledge representation paradigms. While the early logic programming languages, such as Horn logic programs and Prolog did not focus on expressing and reasoning with uncertainty, in recent years logic programming languages have been developed that can express both logical and quantitative uncertainty. In this paper we give an overview of such languages and the kind of uncertainty they can express and reason with. Among those, we slightly elaborate on the language P-log that not only accommodates probabilistic reasoning, but also respects causality and distinguishes observational and action updates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Online etymology dictionary (July 2011), http://dictionary.reference.com/browse/uncertain

  2. Baral, C.: Knowledge representation, reasoning and declarative problem solving. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  3. Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets. In: Proceedings of LPNMR7, pp. 21–33 (2004)

    Google Scholar 

  4. Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets. TPLP 9(1), 57–144 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Baral, C., Hunsaker, M.: Using the probabilistic logic programming language p-log for causal and counterfactual reasoning and non-naive conditioning. In: IJCAI, pp. 243–249 (2007)

    Google Scholar 

  6. Blair, H., Subrahmanian, V.: Paraconsistent logic programming. Theoretical Computer Science 68, 135–154 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Damasion, C., Moura, J.: Modularity of P-log programs. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 13–25. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic programming. In: Proc. of 12th Annual IEEE Conference on Computational Complexity, pp. 82–101 (1997)

    Google Scholar 

  9. Dekhtyar, A., Dekhtyar, M.: Possible worlds semantics for probabilistic logic programs. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 137–148. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Dekhtyar, A., Subrahmanian, V.S.: Hybrid probabilistic programs. Journal of Logic Programming 43(3), 187–250 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eiter, T., Faber, W., Gottlob, G., Koch, C., Mateis, C., Leone, N., Pfeifer, G., Scarcello, F.: The dlv system. In: Minker, J. (ed.) Pre-prints of Workshop on Logic-Based AI (2000)

    Google Scholar 

  12. van Emden, M.: Quantitative deduction and its fixpoint theory. The Journal of Logic Programming 3(2), 37–53 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. van Emden, M., Kowalski, R.: The semantics of predicate logic as a programming language. Journal of the ACM 23(4), 733–742 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fitting, M., Ben-Jacob, M.: Stratified and Three-Valued Logic programming Semantics. In: Kowalski, R., Bowen, K. (eds.) Proc. 5th International Conference and Symposium on Logic Programming, Seattle, Washington, August 15-19, pp. 1054–1069 (1988)

    Google Scholar 

  15. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.: Potassco: The Potsdam Answer Set Solving Collection. AI Communications - Answer Set Programming archive 24(2) (2011)

    Google Scholar 

  16. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) Logic Programming: Proc. of the Fifth Int’l Conf. and Symp., pp. 1070–1080. MIT Press, Cambridge (1988)

    Google Scholar 

  17. Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: Warren, D., Szeredi, P. (eds.) Logic Programming: Proc. of the Seventh Int’l Conf., pp. 579–597 (1990)

    Google Scholar 

  18. Gelfond, M., Rushton, N.: Causal and probabilistic reasoning in p-log (to appear in an edited book)

    Google Scholar 

  19. Gelfond, M., Rushton, N., Zhu, W.: Combining logical and probabilistic reasoning. In: AAAI Spring 2006 Symposium, pp. 50–55 (2006)

    Google Scholar 

  20. Greco, S., Molinaro, C., Trubitsyna, I., Zumpano, E.: NP-Datalog: A logic language for expressing search and optimization problems. TPLP 10(2), 125–166 (2010)

    MATH  Google Scholar 

  21. Kakas, A., Kowalski, R., Toni, F.: Abductive logic programming. Journal of Logic and Computation 2(6), 719–771 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kersting, K., Raedt, L.D.: Bayesian logic programs. In: Cussens, J., Frisch, A. (eds.) Proceedings of the Work-in-Progress Track at the 10th International Conference on Inductive Logic Programming, pp. 138–155 (2000)

    Google Scholar 

  23. Lloyd, J.: Foundations of logic programming. Springer, Heidelberg (1984)

    Book  MATH  Google Scholar 

  24. Lobo, J., Minker, J., Rajasekar, A.: Foundations of disjunctive logic programming. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  25. Lukasiewicz, T.: Probabilistic logic programming. In: ECAI, pp. 388–392 (1998)

    Google Scholar 

  26. Muggleton, S.: Stochastic logic programs. In: De Raedt, L. (ed.) Proceedings of the 5th International Workshop on Inductive Logic Programming, Department of Computer Science, Katholieke Universiteit Leuven, p. 29 (1995)

    Google Scholar 

  27. Ng, R.T., Subrahmanian, V.S.: Probabilistic logic programming. Information and Computation 101(2), 150–201 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ngo, L., Haddawy, P.: Answering queries from context-sensitive probabilistic knowledge bases. Theoretical Computer Science 171(1–2), 147–177 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Niemelä, I., Simons, P.: Smodels – an implementation of the stable model and well-founded semantics for normal logic programs. In: Dix, J., Furbach, U., Nerode, A. (eds.) Proc. 4th International Conference on Logic Programming and Non-Monotonic Reasoning, pp. 420–429. Springer, Heidelberg (1997)

    Google Scholar 

  30. Pearl, J.: Causality. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  31. Poole, D.: The independent choice logic for modelling multiple agents under uncertainty. Artificial Intelligence 94(1-2), 7–56 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Poole, D.: Abducing through negation as failure: Stable models within the independent choice logic. Journal of Logic Programming 44, 5–35 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Poole, D.: Probabilistic horn abduction and bayesian networks. Artificial Intelligence 64(1), 81–129 (1993)

    Article  MATH  Google Scholar 

  34. Reiter, R.: On closed world data bases. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 119–140. Plenum Press, New York (1978)

    Google Scholar 

  35. Sato, T.: A statistical learning method for logic programs with distribution semantics. In: Proceedings of the 12th International Conference on Logic Programming (ICLP 1995), pp. 715–729 (1995)

    Google Scholar 

  36. Shapiro, E.: Logic programs with uncertainties: A tool for implementing expert systems. In: Proc. IJCAI (1983)

    Google Scholar 

  37. Subrahmanian, V.S.: Uncertainty in logic programming: some recollections. ALP Newsletter (May 2007)

    Google Scholar 

  38. Tannert, C., Elvers, H., Jandrig, B.: The ethics of uncertainty. in the light of possible dangers, research becomes a moral duty. EMBO Report 8(10), 892–896 (2007)

    Article  Google Scholar 

  39. Van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic programs. Journal of ACM 38(3), 620–650 (1991)

    MathSciNet  MATH  Google Scholar 

  40. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated disjunctions. In: ICLP, pp. 431–445 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baral, C. (2011). Logic Programming and Uncertainty. In: Benferhat, S., Grant, J. (eds) Scalable Uncertainty Management. SUM 2011. Lecture Notes in Computer Science(), vol 6929. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23963-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23963-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23962-5

  • Online ISBN: 978-3-642-23963-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics