Abstract
In recent years Logic programming based languages and features–such as rules and non-monotonic constructs–have become important in various knowledge representation paradigms. While the early logic programming languages, such as Horn logic programs and Prolog did not focus on expressing and reasoning with uncertainty, in recent years logic programming languages have been developed that can express both logical and quantitative uncertainty. In this paper we give an overview of such languages and the kind of uncertainty they can express and reason with. Among those, we slightly elaborate on the language P-log that not only accommodates probabilistic reasoning, but also respects causality and distinguishes observational and action updates.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Online etymology dictionary (July 2011), http://dictionary.reference.com/browse/uncertain
Baral, C.: Knowledge representation, reasoning and declarative problem solving. Cambridge University Press, Cambridge (2003)
Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets. In: Proceedings of LPNMR7, pp. 21–33 (2004)
Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets. TPLP 9(1), 57–144 (2009)
Baral, C., Hunsaker, M.: Using the probabilistic logic programming language p-log for causal and counterfactual reasoning and non-naive conditioning. In: IJCAI, pp. 243–249 (2007)
Blair, H., Subrahmanian, V.: Paraconsistent logic programming. Theoretical Computer Science 68, 135–154 (1989)
Damasion, C., Moura, J.: Modularity of P-log programs. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 13–25. Springer, Heidelberg (2011)
Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic programming. In: Proc. of 12th Annual IEEE Conference on Computational Complexity, pp. 82–101 (1997)
Dekhtyar, A., Dekhtyar, M.: Possible worlds semantics for probabilistic logic programs. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 137–148. Springer, Heidelberg (2004)
Dekhtyar, A., Subrahmanian, V.S.: Hybrid probabilistic programs. Journal of Logic Programming 43(3), 187–250 (2000)
Eiter, T., Faber, W., Gottlob, G., Koch, C., Mateis, C., Leone, N., Pfeifer, G., Scarcello, F.: The dlv system. In: Minker, J. (ed.) Pre-prints of Workshop on Logic-Based AI (2000)
van Emden, M.: Quantitative deduction and its fixpoint theory. The Journal of Logic Programming 3(2), 37–53 (1986)
van Emden, M., Kowalski, R.: The semantics of predicate logic as a programming language. Journal of the ACM 23(4), 733–742 (1976)
Fitting, M., Ben-Jacob, M.: Stratified and Three-Valued Logic programming Semantics. In: Kowalski, R., Bowen, K. (eds.) Proc. 5th International Conference and Symposium on Logic Programming, Seattle, Washington, August 15-19, pp. 1054–1069 (1988)
Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.: Potassco: The Potsdam Answer Set Solving Collection. AI Communications - Answer Set Programming archive 24(2) (2011)
Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) Logic Programming: Proc. of the Fifth Int’l Conf. and Symp., pp. 1070–1080. MIT Press, Cambridge (1988)
Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: Warren, D., Szeredi, P. (eds.) Logic Programming: Proc. of the Seventh Int’l Conf., pp. 579–597 (1990)
Gelfond, M., Rushton, N.: Causal and probabilistic reasoning in p-log (to appear in an edited book)
Gelfond, M., Rushton, N., Zhu, W.: Combining logical and probabilistic reasoning. In: AAAI Spring 2006 Symposium, pp. 50–55 (2006)
Greco, S., Molinaro, C., Trubitsyna, I., Zumpano, E.: NP-Datalog: A logic language for expressing search and optimization problems. TPLP 10(2), 125–166 (2010)
Kakas, A., Kowalski, R., Toni, F.: Abductive logic programming. Journal of Logic and Computation 2(6), 719–771 (1993)
Kersting, K., Raedt, L.D.: Bayesian logic programs. In: Cussens, J., Frisch, A. (eds.) Proceedings of the Work-in-Progress Track at the 10th International Conference on Inductive Logic Programming, pp. 138–155 (2000)
Lloyd, J.: Foundations of logic programming. Springer, Heidelberg (1984)
Lobo, J., Minker, J., Rajasekar, A.: Foundations of disjunctive logic programming. MIT Press, Cambridge (1992)
Lukasiewicz, T.: Probabilistic logic programming. In: ECAI, pp. 388–392 (1998)
Muggleton, S.: Stochastic logic programs. In: De Raedt, L. (ed.) Proceedings of the 5th International Workshop on Inductive Logic Programming, Department of Computer Science, Katholieke Universiteit Leuven, p. 29 (1995)
Ng, R.T., Subrahmanian, V.S.: Probabilistic logic programming. Information and Computation 101(2), 150–201 (1992)
Ngo, L., Haddawy, P.: Answering queries from context-sensitive probabilistic knowledge bases. Theoretical Computer Science 171(1–2), 147–177 (1997)
Niemelä, I., Simons, P.: Smodels – an implementation of the stable model and well-founded semantics for normal logic programs. In: Dix, J., Furbach, U., Nerode, A. (eds.) Proc. 4th International Conference on Logic Programming and Non-Monotonic Reasoning, pp. 420–429. Springer, Heidelberg (1997)
Pearl, J.: Causality. Cambridge University Press, Cambridge (2000)
Poole, D.: The independent choice logic for modelling multiple agents under uncertainty. Artificial Intelligence 94(1-2), 7–56 (1997)
Poole, D.: Abducing through negation as failure: Stable models within the independent choice logic. Journal of Logic Programming 44, 5–35 (2000)
Poole, D.: Probabilistic horn abduction and bayesian networks. Artificial Intelligence 64(1), 81–129 (1993)
Reiter, R.: On closed world data bases. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 119–140. Plenum Press, New York (1978)
Sato, T.: A statistical learning method for logic programs with distribution semantics. In: Proceedings of the 12th International Conference on Logic Programming (ICLP 1995), pp. 715–729 (1995)
Shapiro, E.: Logic programs with uncertainties: A tool for implementing expert systems. In: Proc. IJCAI (1983)
Subrahmanian, V.S.: Uncertainty in logic programming: some recollections. ALP Newsletter (May 2007)
Tannert, C., Elvers, H., Jandrig, B.: The ethics of uncertainty. in the light of possible dangers, research becomes a moral duty. EMBO Report 8(10), 892–896 (2007)
Van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic programs. Journal of ACM 38(3), 620–650 (1991)
Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated disjunctions. In: ICLP, pp. 431–445 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baral, C. (2011). Logic Programming and Uncertainty. In: Benferhat, S., Grant, J. (eds) Scalable Uncertainty Management. SUM 2011. Lecture Notes in Computer Science(), vol 6929. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23963-2_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-23963-2_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23962-5
Online ISBN: 978-3-642-23963-2
eBook Packages: Computer ScienceComputer Science (R0)