A Nearly Optimal Algorithm for Finding L 1 Shortest Paths among Polygonal Obstacles in the Plane | SpringerLink
Skip to main content

A Nearly Optimal Algorithm for Finding L 1 Shortest Paths among Polygonal Obstacles in the Plane

  • Conference paper
Algorithms – ESA 2011 (ESA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6942))

Included in the following conference series:

Abstract

Given a set of h pairwise disjoint polygonal obstacles of totally n vertices in the plane, we study the problem of computing an L 1 (or rectilinear) shortest path between two points avoiding the obstacles. Previously, this problem has been solved in O(nlogn) time and O(n) space, or alternatively in O(n + hlog1.5 n) time and O(n + hlog1.5 h) space. A lower bound of Ω(n + hlogh) time and Ω(n) space can be established for this problem. In this paper, we present a nearly optimal algorithm of O(n + hlog1 + ε h) time and O(n) space for the problem, where ε > 0 is an arbitrarily small constant. Specifically, after the free space is triangulated in O(n + hlog1 + ε h) time, our algorithm finds a shortest path in O(n + hlogh) time and O(n) space. Our algorithm can also be extended to obtain improved results for other related problems, e.g., finding shortest paths with fixed orientations, finding approximate Euclidean shortest paths, etc. In addition, our techniques yield improved results on some shortest path query problems.

This research was supported in part by NSF under Grant CCF-0916606.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bar-Yehuda, R., Chazelle, B.: Triangulating disjoint Jordan chains. International Journal of Computational Geometry and Applications 4(4), 475–481 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chazelle, B.: Triangulating a simple polygon in linear time. Discrete and Computational Geometry 6, 485–524 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, D., Klenk, K., Tu, H.Y.: Shortest path queries among weighted obstacles in the rectilinear plane. SIAM Journal on Computing 29(4), 1223–1246 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, D., Wang, H.: Computing shortest paths among curved obstacles in the plane. In: arXiv:1103.3911 (2011)

    Google Scholar 

  5. Clarkson, K.: Approximation algorithms for shortest path motion planning. In: Proc. of the 19th Annual ACM Symposium on Theory of Computing, pp. 56–65 (1987)

    Google Scholar 

  6. Clarkson, K., Kapoor, S., Vaidya, P.: Rectilinear shortest paths through polygonal obstacles in O(n log2 n) time. In: Proc. of the 3rd Annual Symposium on Computational Geometry, pp. 251–257 (1987)

    Google Scholar 

  7. Clarkson, K., Kapoor, S., Vaidya, P.: Rectilinear shortest paths through polygonal obstacles in O(n log2/3 n) time (1988) (manuscript)

    Google Scholar 

  8. Edelsbrunner, H., Guibas, L., Stolfi, J.: Optimal point location in a monotone subdivision. SIAM Journal on Computing 15(2), 317–340 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ghosh, S., Mount, D.: An output-sensitive algorithm for computing visibility. SIAM Journal on Computing 20(5), 888–910 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hershberger, J., Snoeyink, J.: Computing minimum length paths of a given homotopy class. Computational Geometry: Theory and Applications 4(2), 63–97 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hershberger, J., Suri, S.: An optimal algorithm for Euclidean shortest paths in the plane. SIAM Journal on Computing 28(6), 2215–2256 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hertel, S., Mehlhorn, K.: Fast triangulation of the plane with respect to simple polygons. Information and Control 64, 52–76 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Inkulu, R., Kapoor, S.: Planar rectilinear shortest path computation using corridors. Computational Geometry: Theory and Applications 42(9), 873–884 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Inkulu, R., Kapoor, S., Maheshwari, S.: A near optimal algorithm for finding Euclidean shortest path in polygonal domain. In: arXiv:1011.6481v1 (2010)

    Google Scholar 

  15. Kapoor, S., Maheshwari, S., Mitchell, J.: An efficient algorithm for Euclidean shortest paths among polygonal obstacles in the plane. Discrete and Computational Geometry 18(4), 377–383 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kirkpatrick, D.: Optimal search in planar subdivisions. SIAM Journal on Computing 12(1), 28–35 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Larsona, R., Li, V.: Finding minimum rectilinear distance paths in the presence of barriers. Networks 11, 285–304 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mitchell, J.: An optimal algorithm for shortest rectilinear paths among obstacles. In: Abstracts of the 1st Canadian Conference on Computational Geometry (1989)

    Google Scholar 

  19. Mitchell, J.: L 1 shortest paths among polygonal obstacles in the plane. Algorithmica 8(1), 55–88 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mitchell, J.: Shortest paths among obstacles in the plane. International Journal of Computational Geometry and Applications 6(3), 309–332 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. de Rezende, P., Lee, D., Wu, Y.: Rectilinear shortest paths with rectangular barriers. In: Proc. of the 1st Annual Symposium on Computational Geometry, pp. 204–213 (1985)

    Google Scholar 

  22. Storer, J., Reif, J.: Shortest paths in the plane with polygonal obstacles. Journal of the ACM 41(5), 982–1012 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Widmayer, P.: On graphs preserving rectilinear shortest paths in the presence of obstacles. Annals of Operations Research 33(7), 557–575 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Widmayer, P., Wu, Y., Wong, C.: On some distance problems in fixed orientations. SIAM Journal on Computing 16(4), 728–746 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, D.Z., Wang, H. (2011). A Nearly Optimal Algorithm for Finding L 1 Shortest Paths among Polygonal Obstacles in the Plane. In: Demetrescu, C., Halldórsson, M.M. (eds) Algorithms – ESA 2011. ESA 2011. Lecture Notes in Computer Science, vol 6942. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23719-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23719-5_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23718-8

  • Online ISBN: 978-3-642-23719-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics