Abstract
Active contours or snakes are widely used for segmentation and tracking. Recently a new active contour model was proposed, combining edge and region information. The method has a convex energy function, thus becoming invariant to the initialization of the active contour. This method is promising, but has no regularization term. Therefore segmentation results of this method are highly dependent of the quality of the images. We propose a new active contour model which also uses region and edge information, but which has an extra regularization term. This work provides an efficient optimization scheme based on Split Bregman for the proposed active contour method. It is experimentally shown that the proposed method has significant better results in the presence of noise and clutter.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. International Journal of Computer Vision, 321–331 (1988)
Isard, M., Blake, A.: Active contours. Springer, Heidelberg (1998)
Ray, N., Acton, S.: Motion gradient vector flow: An external force for tracking rolling leukocytes with shape and size constrained active contours. IEEE Transaction on Medical Imaging 23, 1466–1478 (2004)
Tang, J.: A multi-direction gvf snake for the segmentation of skin cancer images. Pattern Recognition (2008)
Charmi, M.A., Derrode, S., Ghorbel, S.: Fourier-based geometric shape prior for snakes. Pattern Recognition Letters 29, 897–904 (2008)
Rochery, M., Jermyn, I.H., Zerubia, J.: Higher order active contours. Int. J. Comput. Vision 69(1), 27–42 (2006)
Chan, T., Vese, L.: An active contour model without edges. Scale-Space Theories in Computer Vision 1682, 141–151 (1999)
Mille, J.: Narrow band region-based active contours and surfaces for 2d and 3d segmentation. Computer Vision and Image Understanding 113(9), 946–965 (2009)
Tsechpenakis, G., Rapantizikos, K., Tsapatsoulis, N., Kollias, S.: A snake model for object tracking in natural sequences. Signal Processing: Image Communication 19, 219–238 (2004)
Goldenberg, R., Kimmel, R., Rivlin, E., Rudzsky, M.: Fast geodesic active contours. IEEE Transactions on Image Processing 10(10), 1467–1475 (2001)
Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. Siam Journal on Applied Mathematics 66(5), 1632–1648 (2006)
Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split bregman method: Segmentation and surface reconstruction. Journal of Scientific Computing 45(1-3), 272–293 (2010)
Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.P., Osher, S.: Fast global minimization of the active contour/snake model. Journal of Mathematical Imaging and Vision 28(2), 151–167 (2007)
Bresson, X., Chan, T.F.: Active contours based on chambolle’s mean curvature motion. In: 2007 IEEE International Conference on Image Processing, vol. 1-7, pp. 33–36 (2007)
Goldstein, T., Osher, S.: The split bregman method for l1-regularized problems. Siam Journal on Imaging Sciences 2(2), 323–343 (2009)
Saad, Y.: Iterative methods for sparse linear systems, 2nd edn. SIAM, Philadelphia (2003)
Ruusuvuori, P., Lehmussola, A., Selinummi, J., Rajala, T., Huttunen, H., Yli-Harja, O.: Set of synthetic images for validating cell image analysis. In: Proc. of the 16th European Signal Processing Conference, EUSIPCO-2008 (2008)
Aleman-Flores, M., Alvarez, L., Caselles, V.: Texture-oriented anisotropic filtering and geodesic active contours in breast tumor ultrasound segmentation. Journal of Mathematical Imaging and Vision 28(1), 81–97 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
De Vylder, J., Aelterman, J., Philips, W. (2011). Robust Active Contour Segmentation with an Efficient Global Optimizer. In: Blanc-Talon, J., Kleihorst, R., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2011. Lecture Notes in Computer Science, vol 6915. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23687-7_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-23687-7_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23686-0
Online ISBN: 978-3-642-23687-7
eBook Packages: Computer ScienceComputer Science (R0)