Robust Active Contour Segmentation with an Efficient Global Optimizer | SpringerLink
Skip to main content

Robust Active Contour Segmentation with an Efficient Global Optimizer

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6915))

  • 2207 Accesses

Abstract

Active contours or snakes are widely used for segmentation and tracking. Recently a new active contour model was proposed, combining edge and region information. The method has a convex energy function, thus becoming invariant to the initialization of the active contour. This method is promising, but has no regularization term. Therefore segmentation results of this method are highly dependent of the quality of the images. We propose a new active contour model which also uses region and edge information, but which has an extra regularization term. This work provides an efficient optimization scheme based on Split Bregman for the proposed active contour method. It is experimentally shown that the proposed method has significant better results in the presence of noise and clutter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. International Journal of Computer Vision, 321–331 (1988)

    Google Scholar 

  2. Isard, M., Blake, A.: Active contours. Springer, Heidelberg (1998)

    Google Scholar 

  3. Ray, N., Acton, S.: Motion gradient vector flow: An external force for tracking rolling leukocytes with shape and size constrained active contours. IEEE Transaction on Medical Imaging 23, 1466–1478 (2004)

    Article  Google Scholar 

  4. Tang, J.: A multi-direction gvf snake for the segmentation of skin cancer images. Pattern Recognition (2008)

    Google Scholar 

  5. Charmi, M.A., Derrode, S., Ghorbel, S.: Fourier-based geometric shape prior for snakes. Pattern Recognition Letters 29, 897–904 (2008)

    Article  Google Scholar 

  6. Rochery, M., Jermyn, I.H., Zerubia, J.: Higher order active contours. Int. J. Comput. Vision 69(1), 27–42 (2006)

    Article  Google Scholar 

  7. Chan, T., Vese, L.: An active contour model without edges. Scale-Space Theories in Computer Vision 1682, 141–151 (1999)

    Article  Google Scholar 

  8. Mille, J.: Narrow band region-based active contours and surfaces for 2d and 3d segmentation. Computer Vision and Image Understanding 113(9), 946–965 (2009)

    Article  Google Scholar 

  9. Tsechpenakis, G., Rapantizikos, K., Tsapatsoulis, N., Kollias, S.: A snake model for object tracking in natural sequences. Signal Processing: Image Communication 19, 219–238 (2004)

    Google Scholar 

  10. Goldenberg, R., Kimmel, R., Rivlin, E., Rudzsky, M.: Fast geodesic active contours. IEEE Transactions on Image Processing 10(10), 1467–1475 (2001)

    Article  MathSciNet  Google Scholar 

  11. Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. Siam Journal on Applied Mathematics 66(5), 1632–1648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split bregman method: Segmentation and surface reconstruction. Journal of Scientific Computing 45(1-3), 272–293 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.P., Osher, S.: Fast global minimization of the active contour/snake model. Journal of Mathematical Imaging and Vision 28(2), 151–167 (2007)

    Article  MathSciNet  Google Scholar 

  14. Bresson, X., Chan, T.F.: Active contours based on chambolle’s mean curvature motion. In: 2007 IEEE International Conference on Image Processing, vol. 1-7, pp. 33–36 (2007)

    Google Scholar 

  15. Goldstein, T., Osher, S.: The split bregman method for l1-regularized problems. Siam Journal on Imaging Sciences 2(2), 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Saad, Y.: Iterative methods for sparse linear systems, 2nd edn. SIAM, Philadelphia (2003)

    Google Scholar 

  17. Ruusuvuori, P., Lehmussola, A., Selinummi, J., Rajala, T., Huttunen, H., Yli-Harja, O.: Set of synthetic images for validating cell image analysis. In: Proc. of the 16th European Signal Processing Conference, EUSIPCO-2008 (2008)

    Google Scholar 

  18. Aleman-Flores, M., Alvarez, L., Caselles, V.: Texture-oriented anisotropic filtering and geodesic active contours in breast tumor ultrasound segmentation. Journal of Mathematical Imaging and Vision 28(1), 81–97 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

De Vylder, J., Aelterman, J., Philips, W. (2011). Robust Active Contour Segmentation with an Efficient Global Optimizer. In: Blanc-Talon, J., Kleihorst, R., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2011. Lecture Notes in Computer Science, vol 6915. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23687-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23687-7_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23686-0

  • Online ISBN: 978-3-642-23687-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics