Automatic Word Sense Disambiguation and Construction Identification Based on Corpus Multilevel Annotation | SpringerLink
Skip to main content

Automatic Word Sense Disambiguation and Construction Identification Based on Corpus Multilevel Annotation

  • Conference paper
Text, Speech and Dialogue (TSD 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6836))

Included in the following conference series:

  • 955 Accesses

Abstract

The research project reported in this paper aims at automatic extraction of linguistic information from contexts in the Russian National Corpus (RNC) and its subsequent use in building a comprehensive lexicographic resource – the Index of Russian lexical constructions. The proposed approach implies automatic context classification intended for word sense disambiguation (WSD) and construction identification (CxI). The automatic context processing procedure takes into account the following types of contextual information represented in the RNC multilevel annotation: lexical (lemma) tags (lex), morphological (grammatical) tags (gr), semantic (taxonomy) tags (sem), and combinations of the various types of tags. Multiple experiments on WSD and CxI are performed using RNC representative context samples for nouns. In each series of experiments we analyze (1) different context markers of meaning of target words and (2) constructions including context markers and target words.

This work was supported by Russian Foundation for Basic Research (grant No 10-06-00586) and the RAS Presidium program of basic research “Corpus Linguistics”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Russian National Corpus, http://ruscorpora.ru

  2. Russian National Corpus: 2003–2005. Indrik, Moscow (2005) (in Russian)

    Google Scholar 

  3. Russian National Corpus: 2006–2008. New results and future development. Nestor-Istorija, St. Petersburg (2009) (in Russian)

    Google Scholar 

  4. Nivre, J., Boguslavsky, I.M., Iomdin, L.: Parsing the SynTagRus Treebank of Russian. In: COLING 2008, Manchester, UK, vol. 1, pp. 641–648 (2008)

    Google Scholar 

  5. Goldberg, A.E.: Constructions. A Construction Grammar Approach to Argument Structure. University of Chicago Press, Chicago (1995)

    Google Scholar 

  6. Goldberg, A.E.: Constructions at Work: the Nature of Generalization in Language. Oxford University Press, Oxford (2006)

    Google Scholar 

  7. Fillmore, C.J.: The Mechanisms of Construction Grammar. Proceedings of the Berkeley Linguistic Society 14, 35–55 (1988)

    Article  Google Scholar 

  8. Tomasello, M.: Constructing a Language: A Usage-Based Approach to Child Language Acquisition. Harvard University Press, Cambridge (2003)

    Google Scholar 

  9. Agirre, E., Edmonds, P. (eds.): Word Sense Disambiguation: Algorithms and Applications. Text, Speech and Language Technology, vol. 33. Springer, Heidelberg (2007)

    Google Scholar 

  10. Mihalcea, R., Pedersen, T.: Word Sense Disambiguation Tutorial (2005), http://www.d.umn.edu/~tpederse/WSDTutorial.html

  11. Navigli, R.: Word Sense Disambiguation: a Survey. ACM Computing Surveys 41(2), 1–69 (2009)

    Article  Google Scholar 

  12. WordNet, http://wordnet.princeton.edu/

  13. FrameNet, http://framenet.icsi.berkeley.edu/

  14. Pedersen, T.: A Baseline Methodology for Word Sense Disambiguation. In: Gelbukh, A.F. (ed.) CICLing 2002. LNCS, vol. 2276, p. 126. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Schütze, H.: Automatic Word Sense Disambiguation. Computational Linguistics 24(1), 23–97 (1998)

    Google Scholar 

  16. Leacock, C., Chodorow, M., Miller, G.: Using Corpus Statistics and WordNet Relations for Sense Identification. Computational Linguistics 24(1), 147–165 (1998)

    Google Scholar 

  17. Mihalcea, R.: Word Sense Disambiguation Using Pattern Learning and Automatic Feature Selection. Journal of Natural Language and Engineering 1(1), 1–15 (2002)

    MathSciNet  Google Scholar 

  18. Mitrofanova, O., Panicheva, P., Lashevskaya, O.: Statistical Word Sense Disambiguation in Contexts for Russian Nouns Denoting Physical Objects. In: Sojka, P., et al. (eds.) TSD 2008. LNCS (LNAI), vol. 5246, pp. 153–159. Springer, Heidelberg (2008a)

    Chapter  Google Scholar 

  19. Mitrofanova, O., Lashevskaya, O., Panicheva, P.: Experiments on statistical WSD for Russian nouns in a corpus. In: Proceedings of the International Conference Corpora 2008, St. Petersburg, Russia, October 6–10, pp. 284–293 (2008b) (in Russian)

    Google Scholar 

  20. Lukashevich, N.V., Chujko, D.S.: Automatic WSD based on thesaurus knowledge. In: Internet-matematika 2007, Ekaterinburg, pp. 108–117 (2007) (in Russian)

    Google Scholar 

  21. Rahilina, E.V., Kobritsov, B.P., Kustova, G.I., Lashevskaja, O.N., Shemanaeva, O.J.: Semantic ambiguity as an application-oriented problem: word class tagging in the RNC. In: Computational Linguistics and Intellectual Technologies. Proceedings of the International Workshop Dialogue 2006, Moscow, pp. 445–450 (2006) (in Russian)

    Google Scholar 

  22. Kustova, G.I., Lashevskaja, O.N., Paducheva, E.V., Rakhilina, E.V.: Verb Taxonomy: From Theoretical Lexical Semantics to Practice of Corpus Tagging. In: Lewandowska, B., Dziwirek, K. (eds.) Cognitive Corpus Linguistics Studies. Peter Lang, Frankfurt (2009)

    Google Scholar 

  23. Azarova, I.V., Bichineva, S.V., Vakhitova, D.T.: Automatic WSD of the most frequent nouns (in terms of the structural units of RussNet). In: Proceedings of the International Conference Corpora 2008, St. Petersburg, Russia, October 6–10, pp. 5–8 (2008) (in Russian)

    Google Scholar 

  24. Azarova, I.V., Marina, A.S.: Computational context classification: preparing the data for the thesaurus RussNet. In: Computational Linguistics and Intellectual Technologies. Proceedings of the International Workshop Dialogue 2006, pp. 13–17. RGGU, Moscow (2006) (in Russian)

    Google Scholar 

  25. Kobritsov, B.P., Lashevskaja, O.N., Shemanajeva, O.J.: WSD in mass media texts: shallow rules and statistic evaluation. In: Internet–matematika 2005: Avtomaticheskaja obrabotka web-dannyx, Moscow, pp. 38–57 (2005) (in Russian)

    Google Scholar 

  26. Toldova, S.J., Kustova, G.I., Lashevskaja, O.N.: Semantic filters for WSD in the Russian National Corpus: verbs. In: Computational linguistics and intellectual technologies. Proceedings of the International Workshop Dialogue 2008, pp. 522–529. RGGU, Moscow (2008) (in Russian)

    Google Scholar 

  27. Sahlgren, M., Knutsson, O.: Workshop on Extracting and Using Constructions in NLP. In: NODALIDA 2009. SICS Technical Report T2009:10 (2009)

    Google Scholar 

  28. Proceedings of the NAACL HLT Workshop on Extracting and Using Constructions in Computational Linguistics, pp. 25–31, Los Angeles, CA (2010)

    Google Scholar 

  29. Wible, D., Tsao, N.-L.: StringNet as a Computational Resource for Discovering and Investigating Linguistic Constructions. In: Proceedings of the NAACL HLT Workshop on Extracting and Using Constructions in Computational Linguistics, Los Angeles, CA, pp. 25–31 (2010)

    Google Scholar 

  30. Lashevskaja, O., Mitrofanova, O.: Disambiguation of Taxonomy Markers in Context: Russian Nouns. In: Jokinen, K., Bick, E. (eds.) NODALIDA 2009. NEALT Proceedings Series, vol. 4, pp. 111–117 (2009)

    Google Scholar 

  31. Mitrofanova, O., Lyashevskaya, O.: Context markers of the nouns with concrete meaning in the lexico-semantic annotation of the RNC. In: XXXVIII International philological Conference, St. Petersburg (2009) (in Russian)

    Google Scholar 

  32. Atkins, B.T.S., Rundell, M.: The Oxford Guide to Practical Lexicography. Oxford University Press, New York (2008)

    Google Scholar 

  33. Gries, S.T., Divjak, D.: Behavioral Profiles: a Corpus-Based Approach to Cognitive Semantic Analysis. In: Evans, V., Pourcel, S.S. (eds.) New Directions in Cognitive Linguistics. John Benjamins, Amsterdam (2008)

    Google Scholar 

  34. Fillmore, C.J., Lee-Goldman, R.R., Rhodes, R.: The FrameNet Constructicon. In: Boas, H.C., Sag, I.A. (eds.) Sign-based Construction Grammar. CSLI Publications, Stanford (forthcoming)

    Google Scholar 

  35. Lyashevskaya, O.: Bank of Russian Constructions and Valencies. In: LREC 2010, pp. 1802–1805. ELRA (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lyashevskaya, O., Mitrofanova, O., Grachkova, M., Romanov, S., Shimorina, A., Shurygina, A. (2011). Automatic Word Sense Disambiguation and Construction Identification Based on Corpus Multilevel Annotation. In: Habernal, I., Matoušek, V. (eds) Text, Speech and Dialogue. TSD 2011. Lecture Notes in Computer Science(), vol 6836. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23538-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23538-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23537-5

  • Online ISBN: 978-3-642-23538-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics