Learning from Imbalanced Data: Evaluation Matters | SpringerLink
Skip to main content

Learning from Imbalanced Data: Evaluation Matters

  • Chapter
Data Mining: Foundations and Intelligent Paradigms

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 23))

  • 2415 Accesses

Abstract

Datasets having a highly imbalanced class distribution present a fundamental challenge in machine learning, not only for training a classifier, but also for evaluation. There are also several different evaluation measures used in the class imbalance literature, each with its own bias. Compounded with this, there are different cross-validation strategies. However, the behavior of different evaluation measures and their relative sensitivities—not only to the classifier but also to the sample size and the chosen cross-validation method—is not well understood. Papers generally choose one evaluation measure and show the dominance of one method over another. We posit that this common methodology is myopic, especially for imbalanced data. Another fundamental issue that is not sufficiently considered is the sensitivity of classifiers both to class imbalance as well as to having only a small number of samples of the minority class. We consider such questions in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akbani, R., Kwek, S.S., Japkowicz, N.: Applying support vector machines to imbalanced datasets. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 39–50. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explorations 6(1) (2004)

    Google Scholar 

  3. Blake, C., Merz, C.: UCI repository of machine learning databases (1998)

    Google Scholar 

  4. Chang, C., Lin, C.: Libsvm data sets, http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

  5. Chawla, N.V., Japkowicz, N., Kotcz, A.: Editorial: special issue on learning from imbalanced data sets. ACM SIGKDD Explorations Newsletter 6(1), 1–6 (2004)

    Article  Google Scholar 

  6. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic Minority Oversampling TEchnique. JAIR 16, 321–357 (2002)

    MATH  Google Scholar 

  7. Chawla, N.V., Cieslak, D., Hall, L.O., Joshi, A.: Automatically Countering Imbalance and Its Empirical Relationship to Cost. In: DMKD (2009)

    Google Scholar 

  8. Cieslak, D.A., Chawla, N.V.: Learning decision trees on unbalanced data. In: ECML (2008)

    Google Scholar 

  9. Davis, J., Goadrich, M.: The relationship between precision-recall and roc curves. In: Proceedings of the 23rd International Conference on Machine learning, p. 240. ACM, New York (2006)

    Google Scholar 

  10. Demsar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. JMLR 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Direct Marketing Association. The dmef data set library, http://www.directworks.org/Educators/Default.aspx?id=632

  12. Domingos, P., Pazzani, M.J.: Beyond independence: Conditions for the optimality of the simple bayesian classifier. In: ICML (1996)

    Google Scholar 

  13. Ezawa, K.J., Singh, M., Norton, S.W.: Learning Goal Oriented Bayesian Networks for Risk Management. In: ICML, pp. 139–147 (1996)

    Google Scholar 

  14. Forman, G.: A method for discovering the insignificance of one’s best classifier and the unlearnability of a classification task. In: Data Mining Lessons Learned Workshop, ICML (2002)

    Google Scholar 

  15. Forman, G., Cohen, I.: Beware the null hypothesis: Critical value tables for evaluating classifiers. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 133–145. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Hand, D.J.: Measuring classifier performance: a coherent alternative to the area under the ROC curve. Machine Learning 77(1), 103–123 (2009)

    Article  Google Scholar 

  17. Hulse, J.V., Khoshgoftaar, T.M., Napolitano, A.: Experimental perspectives on learning from imbalanced data. In: Ghahramani, Z. (ed.) ICML, pp. 935–942. ACM, New York (2007)

    Chapter  Google Scholar 

  18. Kubat, M., Holte, R., Matwin, S.: Machine Learning for the Detection of Oil Spills in Satellite Radar Images. Machine Learning 30, 195–215 (1998)

    Article  Google Scholar 

  19. Lewis, D.D., Yang, Y., Rose, T., Li, F.: RCV1: A new benchmark collection for text categorization research. Journal of Machine Learning Research 5, 361–397 (2004)

    Google Scholar 

  20. Lichtenwalter, R., Lussier, J., Chawla, N.: New Perspectives and Methods in Link Prediction. In: Proceedings of KDD

    Google Scholar 

  21. Mease, D., Wyner, A.J., Buja, A.: Boosted classification trees and class probability/quantile estimation. Journal of Machine Learning Research 8(3), 557–562 (2007)

    Google Scholar 

  22. Mladenić, D., Grobelnik, M.: Feature Selection for Unbalanced Class Distribution and Naive Bayes. In: Proceedings of the 16th International Conference on Machine Learning, pp. 258–267 (1999)

    Google Scholar 

  23. Chawla, N.V., Japkowicz, N., Kolcz, A.: Proceedings of the ICML Workshop on Learning from Imbalanced Data Sets (August 2003)

    Google Scholar 

  24. Provost, F., Fawcett, T., Kohavi, R.: The case against accuracy estimation for comparing induction algorithms. In: Proceedings of the Fifteenth International Conference on Machine Learning, Citeseer, vol. 445 (1998)

    Google Scholar 

  25. Radivojac, P., Chawla, N.V., Dunker, K., Obradovic, Z.: Classification and Knowledge Discovery in Protein Databases. JBI 37(4), 224–239 (2004)

    Google Scholar 

  26. Tafts, L.M., et al.: Countering imbalanced datasets to improve adverse drug event predictive models in labor and delivery. JBI (2009)

    Google Scholar 

  27. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  28. Wu, G., Chang, E.Y.: Kba: Kernel boundary alignment considering imbalanced data distribution. IEEE TKDE 17(6), 786–795 (2005)

    Google Scholar 

  29. Wu, J., Xiong, H., Wu, P., Chen, J.: Local Decomposition for Rare Class Analysis. In: Proceedings of KDD, pp. 814–823 (2007)

    Google Scholar 

  30. Zadrozny, B., Elkan, C.: Learning and making decisions when costs and probabilities are both unknown. In: Proceedings KDD (2001)

    Google Scholar 

  31. Zhou, Z., Liu, X.: Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE TKDE 18(1), 63–77 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raeder, T., Forman, G., Chawla, N.V. (2012). Learning from Imbalanced Data: Evaluation Matters. In: Holmes, D.E., Jain, L.C. (eds) Data Mining: Foundations and Intelligent Paradigms. Intelligent Systems Reference Library, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23166-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23166-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23165-0

  • Online ISBN: 978-3-642-23166-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics