Abstract
This paper describes the implementation of a fast and accurate gesture recognition system. Image sequences are used to train a standard SVM to recognize Yes, No, and Neutral gestures from different users. We show that our system is able to detect facial gestures with more than 80% accuracy from even small input images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Chang, C.-C., Lin, C.-J.: Libsvm: a library for support vector machines. Computer, 1–30 (2001)
Hagg, J., Rkl, B., Akan, B., Asplund, L.: Gesture recognition using evolution strategy neural network, pp. 245–248. IEEE, Los Alamitos (2008)
Hasanuzzaman, M., Ampornaramveth, V., Bhuiyan, M.A., Shirai, Y., Ueno, H.: Real-time vision-based gesture recognition for human robot interaction. In: 2004 IEEE International Conference on Robotics and Biomimetics, pp. 413–418 (2004)
Lee, S.-W.: Automatic gesture recognition for intelligent human-robot interaction. In: 7th International Conference on Automatic Face and Gesture Recognition FGR 2006, pp. 645–650 (2006)
Mitra, S., Acharya, T.: Gesture recognition: A survey. IEEE Transactions on Systems Man and Cybernetics Part C Applications and Reviews 37(3), 311–324 (2007)
Oshita, M., Matsunaga, T.: Automatic learning of gesture recognition model using som and svm. Advances in Visual Computing, 751–759 (2010)
Valibeik, S., Yang, G.-Z.: Segmentation and Tracking for Vision Based Human Robot Interaction. IEEE, Los Alamitos (2008)
Vapnik, V.N.: An overview of statistical learning theory. IEEE Transactions on Neural Networks 10(5), 988–999 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baltes, J., Seo, S., Cheng, C.T., Lau, M.C., Anderson, J. (2011). Learning of Facial Gestures Using SVMs. In: Li, TH.S., et al. Next Wave in Robotics. FIRA 2011. Communications in Computer and Information Science, vol 212. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23147-6_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-23147-6_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23146-9
Online ISBN: 978-3-642-23147-6
eBook Packages: Computer ScienceComputer Science (R0)