Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem | SpringerLink
Skip to main content

Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2011)

Abstract

Variational relaxations can be used to compute approximate minimizers of optimal partitioning and multiclass labeling problems on continuous domains. While the resulting relaxed convex problem can be solved globally optimal, in order to obtain a discrete solution a rounding step is required, which may increase the objective and lead to suboptimal solutions. We analyze a probabilistic rounding method and prove that it allows to obtain discrete solutions with an a priori upper bound on the objective, ensuring the quality of the result from the viewpoint of optimization. We show that the approach can be interpreted as an approximate, multiclass variant of the coarea formula.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zach, C., Gallup, D., Frahm, J.M., Niethammer, M.: Fast global labeling for real-time stereo using multiple plane sweeps. Vis. Mod. Vis. (2008)

    Google Scholar 

  2. Lellmann, J., Kappes, J., Yuan, J., Becker, F., Schnörr, C.: Convex multi-class image labeling by simplex-constrained total variation. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 150–162. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Pock, T., Chambolle, A., Cremers, D., Bischof, H.: A convex relaxation approach for computing minimal partitions. Comp. Vis. Patt. Recogn. (2009)

    Google Scholar 

  4. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Clarendon Press, Oxford (2000)

    Google Scholar 

  5. Lellmann, J., Becker, F., Schnörr, C.: Convex optimization for multi-class image labeling with a novel family of total variation based regularizers. In: Int. Conf. Comp. Vis. (2009)

    Google Scholar 

  6. Kleinberg, J.M., Tardos, E.: Approximation algorithms for classification problems with pairwise relationships: Metric labeling and Markov random fields. Found. Comp. Sci., 14–23 (1999)

    Google Scholar 

  7. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. Patt. Anal. Mach. Intell. 23, 1222–1239 (2001)

    Article  Google Scholar 

  8. Olsson, C., Byröd, M., Overgaard, N.C., Kahl, F.: Extending continuous cuts: Anisotropic metrics and expansion moves. In: Int. Conf. Comp. Vis. (2009)

    Google Scholar 

  9. Bertsimas, D., Weismantel, R.: Optimization over Integers. Dynamic Ideas (2005)

    Google Scholar 

  10. Chan, T.F., Esedoḡlu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. J. Appl. Math. 66, 1632–1648 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Alberti, G., Bouchitté, G., Dal Maso, G.: The calibration method for the Mumford-Shah functional and free-discontinuity problems. Calc. Var. Part. Diff. Eq. 16, 299–333 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: Global solutions of variational models with convex regularization. J. Imaging Sci. 3, 1122–1145 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lellmann, J., Lenzen, F., Schnörr, C. (2011). Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem. In: Boykov, Y., Kahl, F., Lempitsky, V., Schmidt, F.R. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2011. Lecture Notes in Computer Science, vol 6819. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23094-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23094-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23093-6

  • Online ISBN: 978-3-642-23094-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics