Relation Liftings on Preorders and Posets | SpringerLink
Skip to main content

Relation Liftings on Preorders and Posets

  • Conference paper
Algebra and Coalgebra in Computer Science (CALCO 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6859))

Included in the following conference series:

Abstract

The category Rel(Set) of sets and relations can be described as a category of spans and as the Kleisli category for the powerset monad. A set-functor can be lifted to a functor on Rel(Set) iff it preserves weak pullbacks. We show that these results extend to the enriched setting, if we replace sets by posets or preorders. Preservation of weak pullbacks becomes preservation of exact lax squares. As an application we present Moss’s coalgebraic over posets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adámek, J., El Bashir, R., Sobral, M., Velebil, J.: On functors that are lax epimorphisms. Theory Appl. Categ. 8.20, 509–521 (2001)

    Google Scholar 

  2. Balan, A., Kurz, A.: Finitary Functors: from Set to Preord and Poset. In: Corradini, A., Klin, B., Crstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 85–99. Springer, Heidelberg (2011)

    Google Scholar 

  3. Baltag, A.: A logic for coalgebraic simulation. Electron. Notes Theor. Comput. Sci. 33, 41–60 (2000)

    MathSciNet  Google Scholar 

  4. Barr, M.: Relational algebras. In: Reports of the Midwest Category Seminar IV. Lecture Notes in Mathematics, vol. 137, pp. 39–55. Springer, Heidelberg (1970)

    Chapter  Google Scholar 

  5. El Bashir, R., Velebil, J.: Reflective and coreflective subcategories of presheaves. Theory Appl. Categ. 10.16, 410–423 (2002)

    Google Scholar 

  6. Carboni, A., Kelly, G.M., Wood, R.J.: A 2-categorical approach to change of base and geometric morphisms I. Cahiers de Top. et Géom. Diff. XXXII.1, 47–95 (1991)

    MathSciNet  Google Scholar 

  7. Guitart, R.: Relations et carrés exacts. Ann. Sci. Math. Québec IV.2, 103–125 (1980)

    MathSciNet  Google Scholar 

  8. Hermida, C.: A categorical outlook on relational modalities and simulations, preprint, http://maggie.cs.queensu.ca/chermida/papers/sat-sim-IandC.pdf

  9. Hermida, C., Jacobs, B.: Structural induction and coinduction in the fibrational setting. Inform. and Comput. 145, 107–152 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hughes, J., Jacobs, B.: Simulations in coalgebra. Theor. Comput. Sci. 327, 71–108 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kapulkin, K., Kurz, A., Velebil, J.: Expressivity of Coalgebraic Logic over Posets. In: CMCS 2010 Short contributions, CWI Technical report SEN-1004, pp. 16–17 (2010)

    Google Scholar 

  12. Kelly, G.M.: Basic concepts of enriched category theory. London Math. Soc. Lecture Notes Series, vol. 64. Cambridge Univ. Press, New York (1982)

    MATH  Google Scholar 

  13. Klin, B.: An Abstract Coalgebraic Approach to Process Equivalence for Well-Behaved Operational Semantics. University of Aarhus (2004)

    Google Scholar 

  14. Kupke, C., Kurz, A., Venema, Y.: Completeness of the finitary Moss logic. In: Advances in Modal Logic, pp. 193–217. College Publications (2008)

    Google Scholar 

  15. Kurz, A., Leal, R.: Equational coalgebraic logic. Electron. Notes Theor. Comput. Sci. 249, 333–356 (2009)

    Article  Google Scholar 

  16. Levy, P.B.: Similarity quotients as final coalgebras. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 27–41. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Marmolejo, F.: Doctrines whose structure forms a fully faithful adjoint string. Theor. Appl. Categ. 3(2), 24–44 (1997)

    MathSciNet  MATH  Google Scholar 

  18. Marmolejo, F.: Distributive laws for pseudomonads. Theor. Appl. Categ. 5(5), 91–147 (1999)

    MathSciNet  MATH  Google Scholar 

  19. Marmolejo, F., Rosebrugh, R., Wood, R.J.: Duality for CCD lattices. Theor. Appl. Categ. 22(1), 1–23 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Moss, L.: Coalgebraic logic. Ann. Pure Appl. Logic 96, 277–317 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rutten, J.: Relators and Metric Bisimulations (Extended Abstract). Electr. Notes Theor. Comput. Sci. 11, 252–258 (1998)

    Article  MathSciNet  Google Scholar 

  22. Street, R.: The formal theory of monads. J. Pure Appl. Algebra 2, 149–168 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  23. Street, R.: Fibrations and Yoneda’s lemma in a 2-category. In: Category Seminar, Sydney 1974. Lecture Notes in Mathematics, vol. 420, pp. 104–133 (1974)

    Google Scholar 

  24. Street, R.: Elementary cosmoi I. In: Category Seminar, Sydney 1974. Lecture Notes in Mathematics, vol. 420, pp. 134–180. Springer, Heidelberg (1974)

    Chapter  Google Scholar 

  25. Street, R.: Fibrations in bicategories. Cahiers de Top. et Géom. Diff. XXI.2, 111–159 (1980)

    MathSciNet  Google Scholar 

  26. Venema, Y.: Automata and fixed point logic: a coalgebraic perspective. Inform. and Comput. 204.4, 637–678 (2006)

    Article  MathSciNet  Google Scholar 

  27. Worrell, J.: Coinduction for recursive data types: partial orders, metric spaces and Ω-categories. Electron. Notes Theor. Comput. Sci. 33, 337–356 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bílková, M., Kurz, A., Petrişan, D., Velebil, J. (2011). Relation Liftings on Preorders and Posets. In: Corradini, A., Klin, B., Cîrstea, C. (eds) Algebra and Coalgebra in Computer Science. CALCO 2011. Lecture Notes in Computer Science, vol 6859. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22944-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22944-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22943-5

  • Online ISBN: 978-3-642-22944-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics