Fife’s Theorem Revisited | SpringerLink
Skip to main content

Fife’s Theorem Revisited

  • Conference paper
Developments in Language Theory (DLT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6795))

Included in the following conference series:

Abstract

We give another proof of a theorem of Fife — understood broadly as providing a finite automaton that gives a complete description of all infinite binary overlap-free words. Our proof is significantly simpler than those in the literature. As an application we give a complete characterization of the overlap-free words that are 2-automatic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allouche, J.-P., Currie, J., Shallit, J.: Extremal infinite overlap-free binary words. Electronic J. Combinatorics 5(1), R27 (1998) (electronic), http://www.combinatorics.org/Volume_5/Abstracts/v5i1r27.html

  2. Allouche, J.-P., Shallit, J.: Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  3. Berstel, J.: A rewriting of Fife’s theorem about overlap-free words. In: Karhumäki, J., Rozenberg, G., Maurer, H. (eds.) Results and Trends in Theoretical Computer Science. LNCS, vol. 812, pp. 19–29. Springer, Heidelberg (1994)

    Google Scholar 

  4. Blondel, V.D., Cassaigne, J., Jungers, R.M.: On the number of α-power-free binary words for 2 < α ≤ 7/3. Theoret. Comput. Sci. 410, 2823–2833 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carpi, A.: Overlap-free words and finite automata. Theoret. Comput. Sci. 115, 243–260 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cassaigne, J.: Counting overlap-free binary words. In: Enjalbert, P., Wagner, K.W., Finkel, A. (eds.) STACS 1993. LNCS, vol. 665, pp. 216–225. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  7. Fife, E.D.: Binary sequences which contain no BBb. Trans. Amer. Math. Soc. 261, 115–136 (1980)

    MathSciNet  MATH  Google Scholar 

  8. Karhumäki, J., Shallit, J.: Polynomial versus exponential growth in repetition-free binary words. J. Combin. Theory. Ser. A 105, 335–347 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rampersad, N., Shallit, J., Shur, A.: Fife’s theorem for \(7\over 3\)-powers (2011) (preprint)

    Google Scholar 

  10. Restivo, A., Salemi, S.: Overlap free words on two symbols. In: Perrin, D., Nivat, M. (eds.) Automata on Infinite Words. LNCS, vol. 192, pp. 198–206. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shallit, J. (2011). Fife’s Theorem Revisited. In: Mauri, G., Leporati, A. (eds) Developments in Language Theory. DLT 2011. Lecture Notes in Computer Science, vol 6795. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22321-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22321-1_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22320-4

  • Online ISBN: 978-3-642-22321-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics