Abstract
We introduce a tableau calculus for a nonmonotonic extension of low complexity Description Logic \(\mathcal{EL}^\bot\) that can be used to reason about typicality and defeasible properties. The calculus deals with Left Local knowledge bases in the logic \(\mathcal{EL}^{\bot} {\bf T}_{min}\) recently introduced in [8] . The calculus performs a two-phase computation to check whether a query is minimally entailed from the initial knowledge base. It is sound, complete and terminating. Furthermore, it is a decision procedure for Left Local \(\mathcal{EL}^{\bot} {\bf T}_{min}\) knowledge bases, whose complexity matches the known results for the logic, namely that entailment is in Πp 2.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baader, F., Brandt, S., Lutz, C.: Pushing the \(\mathcal{EL}\) envelope. In: IJCAI, pp. 364–369 (2005)
Baader, F., Hollunder, B.: Priorities on defaults with prerequisites, and their application in treating specificity in terminological default logic. J. of Automated Reasoning (JAR) 15(1), 41–68 (1995)
Bonatti, P., Faella, M., Sauro, L.: Defeasible inclusions in low-complexity dls: Preliminary notes. In: IJCAI, pp. 696–701 (2009)
Bonatti, P.A., Lutz, C., Wolter, F.: Description logics with circumscription. In: KR, pp. 400–410 (2006)
Buchheit, M., Donini, F.M., Schaerf, A.: Decidable reasoning in terminological knowledge representation systems. J. Artif. Int. Research (JAIR) 1, 109–138 (1993)
Casini, G., Straccia, U.: Rational closure for defeasible description logics. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 77–90. Springer, Heidelberg (2010)
Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and negation as failure. ACM Trans. Comput. Log. 3(2), 177–225 (2002)
Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Reasoning about typicality in low complexity DLs: the logics \(\mathcal{EL}^{\bot}{T}{\bf T}_{\mbox{\em min}}\) and \(\mbox{DL-lite}_c{T}{\bf T}_{\mbox{\em min}}\). To appear in IJCAI (2011)
Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Reasoning about typicality in preferential description logics. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 192–205. Springer, Heidelberg (2008)
Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Prototypical reasoning with low complexity description logics: Preliminary results. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 430–436. Springer, Heidelberg (2009)
Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: \(\mathcal{ALC}+T{\bf T}_{\mbox{\em min}}\): a preferential extension of description logics. Fundamenta Informaticae 96, 1–32 (2009)
Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44(1-2), 167–207 (1990)
Bonatti, P.A., Faella, M., Sauro, L.: \(\mathcal{EL}\) with default attributes and overriding. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 64–79. Springer, Heidelberg (2010)
Straccia, U.: Default inheritance reasoning in hybrid kl-one-style logics. In: IJCAI, pp. 676–681 (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L. (2011). A Tableau Calculus for a Nonmonotonic Extension of \(\mathcal{EL}^\bot\) . In: Brünnler, K., Metcalfe, G. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2011. Lecture Notes in Computer Science(), vol 6793. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22119-4_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-22119-4_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22118-7
Online ISBN: 978-3-642-22119-4
eBook Packages: Computer ScienceComputer Science (R0)