A Tableau Calculus for a Nonmonotonic Extension of $\mathcal{EL}^\bot$ | SpringerLink
Skip to main content

A Tableau Calculus for a Nonmonotonic Extension of \(\mathcal{EL}^\bot\)

  • Conference paper
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2011)

Abstract

We introduce a tableau calculus for a nonmonotonic extension of low complexity Description Logic \(\mathcal{EL}^\bot\) that can be used to reason about typicality and defeasible properties. The calculus deals with Left Local knowledge bases in the logic \(\mathcal{EL}^{\bot} {\bf T}_{min}\) recently introduced in [8] . The calculus performs a two-phase computation to check whether a query is minimally entailed from the initial knowledge base. It is sound, complete and terminating. Furthermore, it is a decision procedure for Left Local \(\mathcal{EL}^{\bot} {\bf T}_{min}\) knowledge bases, whose complexity matches the known results for the logic, namely that entailment is in Πp 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baader, F., Brandt, S., Lutz, C.: Pushing the \(\mathcal{EL}\) envelope. In: IJCAI, pp. 364–369 (2005)

    Google Scholar 

  2. Baader, F., Hollunder, B.: Priorities on defaults with prerequisites, and their application in treating specificity in terminological default logic. J. of Automated Reasoning (JAR) 15(1), 41–68 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonatti, P., Faella, M., Sauro, L.: Defeasible inclusions in low-complexity dls: Preliminary notes. In: IJCAI, pp. 696–701 (2009)

    Google Scholar 

  4. Bonatti, P.A., Lutz, C., Wolter, F.: Description logics with circumscription. In: KR, pp. 400–410 (2006)

    Google Scholar 

  5. Buchheit, M., Donini, F.M., Schaerf, A.: Decidable reasoning in terminological knowledge representation systems. J. Artif. Int. Research (JAIR) 1, 109–138 (1993)

    MathSciNet  MATH  Google Scholar 

  6. Casini, G., Straccia, U.: Rational closure for defeasible description logics. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 77–90. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and negation as failure. ACM Trans. Comput. Log. 3(2), 177–225 (2002)

    Article  MathSciNet  Google Scholar 

  8. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Reasoning about typicality in low complexity DLs: the logics \(\mathcal{EL}^{\bot}{T}{\bf T}_{\mbox{\em min}}\) and \(\mbox{DL-lite}_c{T}{\bf T}_{\mbox{\em min}}\). To appear in IJCAI (2011)

    Google Scholar 

  9. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Reasoning about typicality in preferential description logics. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 192–205. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Prototypical reasoning with low complexity description logics: Preliminary results. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 430–436. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: \(\mathcal{ALC}+T{\bf T}_{\mbox{\em min}}\): a preferential extension of description logics. Fundamenta Informaticae 96, 1–32 (2009)

    MathSciNet  Google Scholar 

  12. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44(1-2), 167–207 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bonatti, P.A., Faella, M., Sauro, L.: \(\mathcal{EL}\) with default attributes and overriding. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 64–79. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Straccia, U.: Default inheritance reasoning in hybrid kl-one-style logics. In: IJCAI, pp. 676–681 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L. (2011). A Tableau Calculus for a Nonmonotonic Extension of \(\mathcal{EL}^\bot\) . In: Brünnler, K., Metcalfe, G. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2011. Lecture Notes in Computer Science(), vol 6793. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22119-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22119-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22118-7

  • Online ISBN: 978-3-642-22119-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics