Multistage Covariance Approach to Measure the Randomness in Financial Time Series Analysis | SpringerLink
Skip to main content

Multistage Covariance Approach to Measure the Randomness in Financial Time Series Analysis

  • Conference paper
Agent and Multi-Agent Systems: Technologies and Applications (KES-AMSTA 2011)

Abstract

The paper presents a new method for randomness assessment in data with temporal structure. In this approach we perform multistage covariance analysis on several parts of the signal to synthesize information about variability and internal dependencies included in its structure. This allows us to identify deterministic cycles or to detect the level of randomness in signals what is an important issue for the design of transactional, prediction and filtration systems. To confirm validity of the proposed method we tested it on simulated and real financial time series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brown, R.G., Hwang, P.: Introduction to random signals and applied Kalman filtering. John Wiley, New York (1992)

    MATH  Google Scholar 

  2. Bishop, C.M.: Neural networks for pattern recognition. Oxford Univ. Press, Oxford (1996)

    MATH  Google Scholar 

  3. Bunde, A., Halvin, S.: Fractals in Science. Springler, Heidelburg (1994)

    Book  Google Scholar 

  4. Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing. John Wiley, Chichester (2002)

    Book  Google Scholar 

  5. Dunis, C.: Forecasting Financial Markets. John Wiley, West Sussex (1996)

    Google Scholar 

  6. Dunis, C.: Applied Quantitative Methods for Trading and Investment. John Wiley, West Sussex (2003)

    Book  Google Scholar 

  7. Haykin, S.: Adaptive filter theory. Prentice-Hall, Upper Saddle River (1996)

    MATH  Google Scholar 

  8. Hull, J.: Options, futures, and other derivatives. Prentice-Hall, Englewood Cliffs (2000)

    MATH  Google Scholar 

  9. Hurst, H.E.: Long term storage capacity of reservoirs. Trans. Am. Soc. Civil Engineers 116, 770–799 (1951)

    Google Scholar 

  10. Kaufman, P., Hoboken, N.J.: New trading systems and methods. John Wiley and Sons, Chichester (2005)

    Google Scholar 

  11. MacDonough, R.N., Whalen, A.D.: Detection of signals in noise. Academic Press, San Diego (1995)

    Google Scholar 

  12. Nikias, C.L., Shao, M.: Signal Processing with Alpha-Stable Distributions and Applications. John Wiley&Son, West Sussex (1995)

    Google Scholar 

  13. Peters, E.: Fractal market analysis. John Wiley&Son, West Sussex (1996)

    Google Scholar 

  14. Samorodnitskij, G., Taqqu, M.: Stable non-Gaussian random processes: stochastic models with infinitive variance. Chapman & Hall, NY (1994)

    Google Scholar 

  15. Stone, J.V.: Blind Source Separation Using Temporal Predictability. Neural Computation 13(7), 1559–1574 (2001)

    Article  MATH  Google Scholar 

  16. Shiryaev, A.N.: Essentials of stochastic finance: facts, models, theory. World Scientific, Singapore (1999)

    Book  Google Scholar 

  17. Szupiluk, R.: Noise Detection for Latent Component Classification in Ensemble Method. Przegląd Elektrotechniczny (1) (2010)

    Google Scholar 

  18. Szupiluk, R., Wojewnik, P., Ząbkowski, T.: The R/S Analysis for the Latent Component Identification for Prediction Improvement Computational Intelligence: Methods and App. EXIT, pp. 590–598 (2008)

    Google Scholar 

  19. Therrien, C.W.: Discrete Random Signals and Statistical Signal Processing. Prentice Hall, New Jersey (1992)

    MATH  Google Scholar 

  20. Vaseghi, S.V.: Advanced signal processing and digital noise reduction. John Wiley and Sons, Chichester (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Szupiluk, R., Wojewnik, P., Ząbkowski, T. (2011). Multistage Covariance Approach to Measure the Randomness in Financial Time Series Analysis. In: O’Shea, J., Nguyen, N.T., Crockett, K., Howlett, R.J., Jain, L.C. (eds) Agent and Multi-Agent Systems: Technologies and Applications. KES-AMSTA 2011. Lecture Notes in Computer Science(), vol 6682. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22000-5_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22000-5_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21999-3

  • Online ISBN: 978-3-642-22000-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics