Abstract
Many solutions are available in the literature for tracking body elements for gesture-based human-computer interfaces, but most of them leave open the problem of tracker initialization or use manual initialization. Solutions for automatic initialization are also available, especially for 3D environments. In this paper we propose a semi-automatic method for initialization of a hand/finger tracker in monocular vision systems. The constraints imposed for the semi-automatic initialization allow a more reliable identification of the target than in the case of fully automatic initialization and can also be used to secure the access to a gesture-based interface. The proposed method combines foreground/background segmentation with color, shape, position and time constraints to ensure a user friendly and safe tracker initialization. The method is not computationally intensive and can be used to initialize virtually any hand/finger tracker.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gavrila, D.M.: The visual analysis of human movement: a survey. Computer Vision and Image Understanding 73(1), 82–98 (1999)
Wang, T.S., Shum, H.Y., Xu, Y.Q., Zheng, N.N.: Unsupervised Analysis of Human Gestures. In: IEEE Pacific Rim Conference on Multimedia, pp. 174–181 (2001)
Karray, F., Alemzadeh, M., Saleh, J.A., Arab, M.N.: Human-Computer Interaction: Overview on State of the Art. International Journal on Smart Sensing and Intelligent Systems 1(1), 137–159 (2008)
Wu, Y., Huang, T.: Vision-Based Gesture Recognition: A Review. In: Proceedings of the International Gesture Recognition Workshop, pp. 103–115 (1999)
Pavlovic, V.I., Sharma, R., Huang, T.S.: Visual Interpretation of Hand Gestures for Human-Computer Interaction: A Review. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 677–695 (1997)
Moeslund, T., Nrgaard, L.: A Brief Overview of Hand Gestures used in Wearable Human Computer Interfaces. Technical Report CVMT 03-02, Computer Vision and Media Technology Laboratory, Aalborg University, DK (2003)
Popa, D., Simion, G., Gui, V., Otesteanu, M.: Real time trajectory based hand gesture recognition. WSEAS Transactions on Information Science and Applications 5(4), 532–546 (2008)
Sidenbladh, H., Black, M.J., Fleet, D.J.: Stochastic tracking of 3D human figures using 2D image motion. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 702–718. Springer, Heidelberg (2000)
Dargazany, A., Solimani, A.: Kernel-Based Hand Tracking. Australian Journal of Basic and Applied Sciences 3(4), 4017–4025 (2009)
Shell, H.S.M., Arora, V., Dutta, A., Behera, L.: Face feature tracking with automatic initialization and failure recovery. In: IEEE Conference on Cybernetics and Intelligent Systems (CIS), pp. 96–101 (2010)
Schmidt, J., Castrillon, M.: Automatic Initialization for Body Tracking - Using Appearance to Learn a Model for Tracking Human Upper Body Motions. In: 3rd International Conference on Computer Vision Theory and Applications (VISAPP), pp. 535–542 (2008)
Xu, J., Wu, Y., Katsaggelos, A.: Part-based initialization for hand tracking. In: 17th IEEE International Conference on Image Processing (ICIP), pp. 3257–3260 (2010)
Coogan, T., Awad, G.M., Han, J., Sutherland, A.: Real time hand gesture recognition including hand segmentation and tracking. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Nefian, A., Meenakshisundaram, G., Pascucci, V., Zara, J., Molineros, J., Theisel, H., Malzbender, T. (eds.) ISVC 2006. LNCS, vol. 4291, pp. 495–504. Springer, Heidelberg (2006)
Bradski, G. R.: Computer vision face tracking as a component of a perceptual user interface. Intel Technology Journal Q2 (1998), http://developer.intel.com/technology/itj/archive/1998.htm
Ramanan, D., Forsyth, D.A.: Finding and tracking people from the bottom up. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2003), vol. 2, pp. 467–474 (2003)
Terrillon, J., Shirazi, M., Fukamachi, H., Akamtsu, S.: Comparative performance of different skin chrominance models and chrominance spaces for the automatic detection of human faces in color images. In: Proceedings of the International Conference on Automatic Face and Gesture Recognition (FG), pp. 54–61 (2000)
Barhate, K.A., Patwardhan, K.S., Roy, S.D., Chaudhuri, S., Chaudhury, S.: Robust shape based two hand tracker. In: Proc. IEEE International Conference on Image Processing (ICIP 2004), pp. 1017–1020 (2004)
Yuan, Q., Sclaroff, S., Athitsos, V.: Automatic 2D Hand Tracking in Video Sequences. In: Seventh IEEE Workshops on Application of Computer Vision WACV/MOTIONS 2005, vol. 1, pp. 250–256 (2005)
Caglar, M.B., Lobo, N.: Open hand detection in a cluttered single image using finger primitives. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, pp. 148–153 (2006)
Stauffer, C., Eric, W., Grimson, L.: Adaptive background mixture models for real-time tracking. In: Proc. IEEE Computer Vision and Pattern Recognition (CVPR), pp. 2246–2252 (1999)
Elgamal, A., Duraiswami, R., Harwood, D., Davis, L.S.: Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proceedings of the IEEE 90(7), 1151–1162 (2002)
Ianăşi, C.N., Gui, V., Toma, C.I., Pescaru, D.: A fast algorithm for background tracking in video surveillance using nonparametric kernel density estimation. In: Facta Universitatis, Niš, Serbia and Montenegro, Series Electronics and Energetics, vol. 18(1), pp. 127–144 (2005)
Stolkin, R., Florescu, I., Kamberov, G.: An adaptive background model for CAMSHIFT tracking with a moving camera. In: Proc. 6th International Conference on Advances in Pattern Recognition, pp. 261–265. World Scientific Publishing, Calcutta (2007)
Salleh, N.S.M., Jais, J., Mazalan, L., Ismail, R., Yussof, S., Ahmad, A., Anuar, A., Mohamad, D.: Sign Language to Voice Recognition: Hand Detection Techniques for Vision-Based Approach. In: Current Developments in Technology-Assisted Education, FORMATEX, Spain, pp. 967–972 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Popa, D., Gui, V., Otesteanu, M. (2011). Semi-Automatic Hand/Finger Tracker Initialization for Gesture-Based Human Computer Interaction. In: Cherifi, H., Zain, J.M., El-Qawasmeh, E. (eds) Digital Information and Communication Technology and Its Applications. DICTAP 2011. Communications in Computer and Information Science, vol 166. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21984-9_36
Download citation
DOI: https://doi.org/10.1007/978-3-642-21984-9_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21983-2
Online ISBN: 978-3-642-21984-9
eBook Packages: Computer ScienceComputer Science (R0)