Influence of Sampling in Radiation Therapy Treatment Design | SpringerLink
Skip to main content

Influence of Sampling in Radiation Therapy Treatment Design

  • Conference paper
Computational Science and Its Applications - ICCSA 2011 (ICCSA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6784))

Included in the following conference series:

  • 1402 Accesses

Abstract

Computer-based optimization simulations have made significant contributions to the improvement of intensity modulated radiation therapy (IMRT) treatment planning. Large amounts of data are typically involved in radiation therapy optimization problems. Regardless the formulation used, the problem size is always the biggest challenge to overcome. The most common strategy to address this problem is sampling which may have a significant impact on the quality of the results. There are few studies on sampling for optimization in radiation therapy, mostly devoted to propose new sampling approaches that accelerate IMRT optimization. However, the gain in computational time comes at a cost: as sampling becomes progressively coarse, the quality of the solution deteriorates. A clinical example of a head and neck case is used to discuss the influence of sampling in radiation therapy treatment design, emphasizing the influence on parotid sparing. Procedures on the choice of the most adequate sample rate are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Acosta, R., Ehrgott, M., Holder, A., Nevin, D., Reese, J., Salter, B.: Comparing beam selection strategies in radiotherapy treatment design: the influence of dose point resolution. In: Alves, C., Pardalos, P., Vicente, L.N. (eds.) Optimization in Medicine. Springer Optimization and Its Applications, pp. 1–24. Springer, New York (2008)

    Chapter  Google Scholar 

  2. Ai-dong, W., Yi-can, W., Sheng-xiang, T., Jiang-hui, Z.: Effect of CT Image-based Voxel Size On Monte Carlo Dose Calculation. In: Proc. 27th Annu. Conf. Engineering in Medicine and Biology, pp. 6449–6451. IEEE Press, Shanghai (2006)

    Google Scholar 

  3. Bahr, G.K., Kereiakes, J.G., Horwitz, H., Finney, R., Galvin, J., Goode, K.: The method of linear programming applied to radiation treatment planning. Radiology 91, 686–693 (1968)

    Article  Google Scholar 

  4. Borffeld, T.: IMRT: a review and preview. Phys. Med. Biol. 51, 363–379 (2006)

    Article  Google Scholar 

  5. Censor, Y.: Mathematical optimization for the inverse problem of intensity-modulated radiation therapy. In: Palta, J.R., Mackie, T.R. (eds.) Intensity-Modulated Radiation Therapy: The State of The Art, American Association of Physicists in Medicine (AAPM). Medical Physics Monograph, vol. (29), pp. 25–49. Medical Physics Publishing, Wisconsin (2003)

    Google Scholar 

  6. Cheong, K., Suh, T., Romeijn, H., Li, J., Dempsey, J.: Fast Nonlinear Optimization with Simple Bounds for IMRT Planning. Med. Phys. 32, 1975 (2005)

    Article  Google Scholar 

  7. ILOG CPLEX, http://www.ilog.com/products/cplex

  8. Craft, D., Halabi, T., Shih, H., Bortfeld, T.: Approximating convex Pareto surfaces in multiobjective radiotherapy planning. Med. Phys. 33, 3399–3407 (2006)

    Article  Google Scholar 

  9. Deasy, J.O., Blanco, A.I., Clark, V.H.: CERR: A Computational Environment for Radiotherapy Research. Med. Phys. 30, 979–985 (2003)

    Article  Google Scholar 

  10. Deasy, J.O., Lee, E.K., Bortfeld, T., Langer, M., Zakarian, K., Alaly, J., Zhang, Y., Liu, H., Mohan, R., Ahuja, R., Pollack, A., Purdy, J., Rardin, R.: A collaboratory for radiation theraphy planning optimization research. Ann. Oper. Res. 148, 55–63 (2006)

    Article  MATH  Google Scholar 

  11. Ehrgott, M., Guler, C., Hammacher, H.W., Shao, L.: Mathematical optimization in intensity modulated radiation therapy. 4OR 6, 199–262 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ferris, M.C., Lim, J.-H., Shepard, D.M.: Optimization approaches for treatment planning on a Gamma Knife. SIAM J. Optim. 13, 921–937 (2003)

    Article  MATH  Google Scholar 

  13. Ferris, M.C., Lim, J.-H., Shepard, D.M.: Radiosurgery treatment planning via nonlinear programming. Ann. of Oper. Res. 119, 247–260 (2003)

    Article  MATH  Google Scholar 

  14. Ferris, M.C., Einarsson, R., Jiang, Z., Shepard, D.M.: Sampling issues for optimization in radiotherapy. Ann. of Oper. Res. 148, 95–115 (2006)

    Article  MATH  Google Scholar 

  15. Holder, A., Salter, B.: A tutorial on radiation oncology and optimization. In: Greenber, H. (ed.) Emerging Methodologies and Applications in Operations Research. Kluwer Academic Press, Boston (2004)

    Google Scholar 

  16. Lee, E.K., Fox, T., Crocker, I.: Simultaneous beam geometry and intensity map optimization in intensity-modulated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 64, 301–320 (2006)

    Article  Google Scholar 

  17. Lee, E.K., Fox, T., Crocker, I.: Integer programing applied to intensity-modulated radiation therapy treatment planning. Ann. Oper. Res. 119, 165–181 (2003)

    Article  MATH  Google Scholar 

  18. Lim, G.J., Ferris, M.C., Wright, S.J., Shepard, D.M., Earl, M.A.: An optimization framework for conformal radiation treatment planning. INFORMS J. Comput. 19, 366–380 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lim, G.J., Lee, E.K.: Optimization in Medicine and Biology. Auerbach Publications, Taylor and Francis, New York (2008)

    Book  Google Scholar 

  20. Lim, G.J., Choi, J., Mohan, R.: Iterative solution methods for beam angle and fluence map optimization in intensity modulated radiation therapy planning. OR Spectrum 30, 289–309 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Martin, B.C., Bortfeld, T.R., Castanon, D.A.: Accelerating IMRT optimization by voxel sampling. Phys. Med. Biol. 52, 7211–7228 (2007)

    Article  Google Scholar 

  22. MATLAB, The MathWorks Inc., http://www.mathworks.com

  23. Misic, V.V., Aleman, D.M., Sharpe, M.B.: Neighborhood search approaches to non-coplanar beam orientation optimization for total marrow irradiation using IMRT. Eur. J. Oper. Res. 3, 522–527 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. PLanUNC, http://planunc.radonc.unc.edu

  25. Preciado-Walters, F., Langer, M.P., Rardin, R.L., Thai, V.: Column generation for IMRT cancer therapy optimization with implementable segments. Ann. Oper. Res. 148, 65–79 (2006)

    Article  MATH  Google Scholar 

  26. Rocha, H., Dias, J.M.: On the optimization of radiation therapy planning. Inescc Research Report (15/2009), http://www.inescc.pt/documentos/15_2009.PDF

  27. Romeijn, H.E., Ahuja, R.K., Dempsey, J.F., Kumar, A.: A new linear programming approach to radiation therapy planning problems. Oper. Res. 54, 201–216 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Romeijn, H.E., Ahuja, R.K., Dempsey, J.F., Kumar, A.: A column generation approach to radiation therapy treatment planning using aperture modulation. SIAM J. Optim. 15, 838–862 (2005)

    Article  MATH  Google Scholar 

  29. Romeijn, H.E., Ahuja, R.K., Dempsey, J.F., Kumar, A., Li, J.: A novel linear programming approach to fluence map optimization for intensity modulated radiation therapy treatment planing. Phys. Med. Biol. 48, 3521–3542 (2003)

    Article  Google Scholar 

  30. Romeijn, H.E., Dempsey, J.F., Li, J.: A unifying framework for multi-criteria fluence map optimization models. Phys. Med. Biol. 49, 1991–2013 (2004)

    Article  Google Scholar 

  31. Spirou, S., Chui, C.-S.: A gradient inverse planning algoritm with dose-volume constraints. Med. Phys. 25, 321–333 (1998)

    Article  Google Scholar 

  32. Thieke, C., Nill, S., Oelfke, U., Bortfeld, T.: Acceleration of intensity-modulated radiotherapy dose calculation by importance sampling of the calculation matrices. Med. Phys. 29, 676–681 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rocha, H., Dias, J.M., Ferreira, B.C., do Carmo Lopes, M. (2011). Influence of Sampling in Radiation Therapy Treatment Design. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications - ICCSA 2011. ICCSA 2011. Lecture Notes in Computer Science, vol 6784. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21931-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21931-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21930-6

  • Online ISBN: 978-3-642-21931-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics