Abstract
A novel method for visualization of a fuzzy or crisp topic set is developed. The method maps the set’s topics to higher ranks of the taxonomy tree of the field. The method involves a penalty function summing penalties for the chosen “head subjects” together with penalties for emerging “gaps” and “offshoots”. The method finds a mapping minimizing the penalty function in recursive steps involving two different scenarios, that of ‘gaining a head subject’ and that of ‘not gaining a head subject’. We illustrate the method by applying it to illustrative and real-world data.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
ACM Computing Classification System (1998), http://www.acm.org/about/class/1998 (Cited September 9, 2008)
Advanced Visual Systems (AVS), http://www.avs.com/solutions/avs-powerviz/utility_distribution.html (Cited November 27 2010)
Beneventano, D., Dahlem, N., El Haoum, S., Hahn, A., Montanari, D., Reinelt, M.: Ontology-driven semantic mapping. In: Enterprise Interoperability III, Part IV, pp. 329–341. Springer, Heidelberg (2008)
Buche, P., Dibie-Barthelemy, J., Ibanescu, L.: Ontology mapping using fuzzy conceptual graphs and rules. In: ICCS Supplement, pp. 17–24 (2008)
Cali, A., Gottlob, G., Pieris, A.: Advanced processing for ontological queries. Proceedings of the VLDB Endowment 3(1), 554–565 (2010)
Dotan-Cohen, D., Kasif, S., Melkman, A.: Seeing the forest for the trees: using the gene ontology to restructure hierarchical clustering. Bioinformatics 25(14), 1789–1795 (2009)
Gahegan, M., Agrawal, R., Jaiswal, A., Luo, J., Soon, K.-H.: A platform for visualizing and experimenting with measures of semantic similarity in ontologies and concept maps. Transactions in GIS 12(6), 713–732 (2008)
Ghazvinian, A., Noy, N., Musen, M.: Creating mappings for ontologies in Biomedicine: simple methods work. In: AMIA 2009 Symposium Proceedings, pp. 198–202 (2009)
Mansingh, G., Osei-Bryson, K.-M., Reichgelt, H.: Using ontologies to facilitate post-processing of association rules by domain experts. Information Sciences 181(3), 419–434 (2011)
Marinica, C., Guillet, F.: Improving post-mining of association rules with ontologies. In: The XIII International Conference Applied Stochastic Models and Data Analysis (ASMDA), pp. 76–80 (2009), ISBN 978-9955-28-463-5
Mazza, R.: Introduction to Information Visualization. Springer, London (2009), ISBN: 978-1-84800-218-0
Mirkin, B., Nascimento, S., Pereira, L.M.: Cluster-lift method for mapping research activities over a concept tree. In: Koronacki, J., Raś, Z.W., Wierzchoń, S.T., Kacprzyk, J. (eds.) Advances in Machine Learning II. SCI, vol. 263, pp. 245–257. Springer, Heidelberg (2010)
Mirkin, B., Nascimento, S.: Analysis of Community Structure, Affinity Data and Research Activities using Additive Fuzzy Spectral Clustering, TR-BBKCS-09-07, p. 24 (2009)
OWL 2 Web Ontology Language Overview (2009), http://www.w3.org/TR/2009/RECowl2overview20091027/ (Cited November 27, 2010)
SNOMED CT (2011), http://www.connectingforhealth.nhs.uk/systemsandservices/data/uktc/snomed (Cited March 2011)
Sosnovsky, S., Mitrovic, A., Lee, D., Prusilovsky, P., Yudelson, M., Brusilovsky, V., Sharma, D.: Towards integration of adaptive educational systems: mapping domain models to ontologies. In: Dicheva, D., Harrer, A., Mizoguchi, R. (eds.) Procs. of 6th International Workshop on Ontologies and Semantic Web for ELearning (SWEL 2008) at ITS 2008 (2008), http://compsci.wssu.edu/iis/swel/SWEL08/Papers/Sosnovsky.pdf
Thomas, H., O’Sullivan, D., Brennan, R.: Evaluation of ontology mapping representation. In: Proceedings of the Workshop on Matching and Meaning, pp. 64–68 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mirkin, B., Nascimento, S., Fenner, T., Felizardo, R. (2011). How to Visualize a Crisp or Fuzzy Topic Set over a Taxonomy. In: Kuznetsov, S.O., Mandal, D.P., Kundu, M.K., Pal, S.K. (eds) Pattern Recognition and Machine Intelligence. PReMI 2011. Lecture Notes in Computer Science, vol 6744. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21786-9_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-21786-9_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21785-2
Online ISBN: 978-3-642-21786-9
eBook Packages: Computer ScienceComputer Science (R0)