A Dynamic Field Model of Ordinal and Timing Properties of Sequential Events | SpringerLink
Skip to main content

A Dynamic Field Model of Ordinal and Timing Properties of Sequential Events

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2011 (ICANN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6792))

Included in the following conference series:

Abstract

Recent evidence suggests that the neural mechanisms underlying memory for serial order and interval timing of sequential events are closely linked. We present a dynamic neural field model which exploits the existence and stability of multi-bump solutions with a gradient of activation to store serial order. The activation gradient is achieved by applying a state-dependent threshold accommodation process to the firing rate function. A field dynamics of lateral inhibition type is used in combination with a dynamics for the baseline activity to recall the sequence from memory. We show that depending on the time scale of the baseline dynamics the precise temporal structure of the original sequence may be retrieved or a proactive timing of events may be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Machado, A., Malheiro, M.T., Erlhagen, W.: Learning to Time: A Perspective. J. of the Experimental Analysis of Behavior 92, 423–458 (2009)

    Article  Google Scholar 

  2. Dominey, P.F.: A shared system for learning serial and temporal structure of sensori-motor sequences? Evidence from simulation and human experiments. Cognitive Brain Research 6, 163–172 (1998)

    Article  Google Scholar 

  3. Janssen, P., Shadlen, M.N.: A representation of the hazard rate of elapsed time in macaque area LIP. Nature Neuroscience 8(2), 234–241 (2005)

    Article  Google Scholar 

  4. Staddon, J.E.R.: Interval timing: memory, not a clock. Trends in Cognitive Sciences 9, 312–314 (2005)

    Article  Google Scholar 

  5. Lewis, P.A., Miall, R.C.: Remembering the time: a continuous clock. Trends in Cognitive Sciences 10, 401–406 (2006)

    Article  Google Scholar 

  6. Amari, S.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biological Cybernetics 27, 77–87 (1977)

    Article  MathSciNet  Google Scholar 

  7. Averbeck, B.B., Chafee, M.V., Crowe, D.A., Georgopoulos, A.P.: Parallel processing of serial movements in prefrontal cortex. Proc. Natl. Acad. Sci. 99, 13172–13177 (2002)

    Article  Google Scholar 

  8. Tanji, J., Shima, K., Mushiake, H.: Concept-based behavioral planning and the lateral prefrontal cortex. Trends in Cognitive Sciences 11, 528–534 (2007)

    Article  Google Scholar 

  9. Genovesio, A., Tsujimoto, S., Wise, S.P.: Neuronal activity related to elapsed time in prefrontal cortex. J. Neurophysiology 95, 3281–3285 (2006)

    Article  Google Scholar 

  10. Genovesio, A., Brasted, P.J., Wise, S.P.: Representation of future and previous spatial goals by separate neural populations in prefrontal cortex. J. Neuroscience 26, 7305–7316 (2006)

    Article  Google Scholar 

  11. Erlhagen, W., Schöner, G.: Dynamic field theory of motor preparation. Psychological Review 109, 545–572 (2002)

    Article  Google Scholar 

  12. Laing, C.R., Troy, W.C., Gutkin, B., Ermentrout, G.B.: Multiple bumps in a neuronal model of working memory. SIAM J. on Applied Math. 63, 62–97 (2002)

    Article  MathSciNet  Google Scholar 

  13. Coombes, S., Owen, M.R.: Exotic dynamics in a firing rate model of neural tissue with threshold accommodation. AMS Cont. Math. 440, 123–144 (2007)

    Article  MathSciNet  Google Scholar 

  14. Grossberg, S.: Behavioral contrast in short term memory: Serial binary memory models or parallel continuous memory models. J. Math. Psych. 17, 199–219 (1978)

    Article  Google Scholar 

  15. Houghton, G.: The problem of serial order: A neural network model of sequence learning and recall. In: Dale, R., Mellish, C., Zock, M. (eds.) Current Research in Natural Language Generation, pp. 287–319. Academic Press, London (1990)

    Google Scholar 

  16. Laing, C., Troy, W.: Two-bump solutions of Amari-type models of neuronal pattern formation. Physica D 178(3), 190–218 (2003)

    Article  MathSciNet  Google Scholar 

  17. Bicho, E., Louro, L., Erlhagen, W.: Integrating verbal and non-verbal communication in a dynamic neural field architecture for human-robot interaction. Front. Neurorobot. 4, 5 (2010), doi:10.3389/fnbot.2010.00005

    Google Scholar 

  18. Sandamirskaya, Y., Schöner, G.: An embodied account of serial order: How instabilities drive sequence generation. Neural Networks 23(10), 1164–1179 (2010)

    Article  Google Scholar 

  19. Farrell, S., McLaughlin, K.: Short-term recognition memory for serial order and timing. Memory & Cognition 35, 1724–1734 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ferreira, F., Erlhagen, W., Bicho, E. (2011). A Dynamic Field Model of Ordinal and Timing Properties of Sequential Events. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2011. ICANN 2011. Lecture Notes in Computer Science, vol 6792. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21738-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21738-8_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21737-1

  • Online ISBN: 978-3-642-21738-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics