Topic-Dependent Document Ranking: Citation Network Analysis by Analogy to Memory Retrieval in the Brain | SpringerLink
Skip to main content

Topic-Dependent Document Ranking: Citation Network Analysis by Analogy to Memory Retrieval in the Brain

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2011 (ICANN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6791))

Included in the following conference series:

Abstract

We propose a method of citation analysis for evaluating the topic-dependent importance of individual scientific papers. This method assumes spreading activation in citation networks with a multi-hysteretic input/output relationship for each node (paper). The multi-hysteretic property renders the steady state of spreading activation continuously dependent on the initial state. Given a topic represented by the initial state, the importance of individual papers can be defined by the activities they have in the steady state. We have devised this method inspired by memory retrieval in the brain, where the multi-hysteretic property of single cells or neuronal networks is considered to play an essential role for cue-dependent retrieval of memory. Quantitative evaluation using a restoration problem has revealed that the performance of the proposed method is considerably higher than that of the benchmark method. We demonstrate the practical usefulness of the proposed method by applying it to a citation network of neuroscience papers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Garfield, E.: Citation Indexes for Science: A New Dimension in Documentation through Association of Ideas. Science 122, 108–111 (1955)

    Article  Google Scholar 

  2. Davis, P.M.: Eigenfactor: Does the principle of repeated improvement result in better estimates than raw citation counts? J. Am. Soc. Info. Sci. Tech. 59, 2186–2188 (2008)

    Article  Google Scholar 

  3. Page, L., et al.: The PageRank Citation Ranking: Bringing Order to the Web. Technical Report, Stanford InfoLab (1998), http://www-db.stanford.edu/~backrub/pageranksub.ps

  4. Maslov, S., Redner, S.: Promise and Pitfalls of Extending Google’s PageRank Algorithm to Citation Networks. J. Neurosci. 28, 11103–11105 (2008)

    Article  Google Scholar 

  5. Kleinberg, J.: Authoritative sources in a hyperlinked environment. J. ACM 46, 604–632 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Woodruff, A., et al.: Enhancing a Digital Book with a Reading Recommender. In: Proceedings of CHI 2000, pp. 153–160. ACM Press, New York (2000)

    Google Scholar 

  7. Haveliwala, T.: Topic-Sensitive PageRank: A Context-Sensitive Ranking Algorithm for Web Search. IEEE Trans. Knowledge Data Eng. 15, 784–796 (2003)

    Article  Google Scholar 

  8. Tsuboshita, Y., Okamoto, H.: Graded information extraction by neural-network dynamics with multihysteretic neurons. Neural Netw. 22, 922–930 (2009)

    Article  Google Scholar 

  9. Collins, A.M., Loftus, E.F.: Spreading-Activation Theory of Semantic Processing. Psychol. Rev. 82, 407–428 (1975)

    Article  Google Scholar 

  10. Anderson, J.R., Pirolli, P.L.: Spread of activation. J. Exp. Psychol. 10, 791–798 (1984)

    Google Scholar 

  11. Egorov, A.V., et al.: Graded persistent activity in entorhinal cortex neurons. Nature 420, 173–178 (2002)

    Article  Google Scholar 

  12. Goldman, M.S., et al.: Robust persistent neural activity in a model integrator with multiple hysteretic dendrites per neuron. Cereb. Cortex 13, 1185–1195 (2003)

    Article  Google Scholar 

  13. Koulakov, A.A., et al.: Model for a robust neural integrator. Nat. Neurosci. 5, 775–782 (2002)

    Article  Google Scholar 

  14. Okamoto, H., et al.: Temporal integration by stochastic recurrent network dynamics with bimodal neurons. J. Neurophysiol. 97, 3859–3867 (2007)

    Article  Google Scholar 

  15. Romo, R., et al.: Somatosensory discrimination based on cortical microstimulation. Nature 399, 470–473 (1999)

    Article  Google Scholar 

  16. Aksay, E., et al.: In vivo intracellular recording and perturbation of persistent activity in a neural integrator. Nat. Neurosci. 4, 184–193 (2001)

    Article  Google Scholar 

  17. Klemn, K., Eguiluz, V.M.: Growing scale-free networks with small-world behavior. Phys. Rev. E 65, 057102 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Okamoto, H. (2011). Topic-Dependent Document Ranking: Citation Network Analysis by Analogy to Memory Retrieval in the Brain. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2011. ICANN 2011. Lecture Notes in Computer Science, vol 6791. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21735-7_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21735-7_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21734-0

  • Online ISBN: 978-3-642-21735-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics