Abstract
We develop a novel modeling framework for Boltzmann machines, augmenting each hidden unit with a latent transformation assignment variable which describes the selection of the transformed view of the canonical connection weights associated with the unit. This enables the inferences of the model to transform in response to transformed input data in a stable and predictable way, and avoids learning multiple features differing only with respect to the set of transformations. Extending prior work on translation equivariant (convolutional) models, we develop translation and rotation equivariant restricted Boltzmann machines (RBMs) and deep belief nets (DBNs), and demonstrate their effectiveness in learning frequently occurring statistical structure from artificial and natural images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Simoncelli, E.P., Freeman, W.T., Adelson, E.H., Heeger, D.J.: Shiftable multi-scale transforms. IEEE Trans. IT 38, 587–607 (1992)
Waibel, A., Hanazawa, T., Hinton, G.E., Shikano, K., Lang, K.: Phoneme recognition using Time Delay Neural Networks. IEEE Trans. ASSP 37, 328–339 (1989)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)
Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: ICML (2009)
Fidler, S., Leonardis, A.: Towards scalable representations of visual categories: Learning a hierarchy of parts. In: CVPR (2007)
Nair, V., Hinton, G.E.: 3D object recognition using deep belief nets. In: NIPS 22 (2009)
Ranzato, M., Mnih, V., Hinton, G.E.: Generating more realistic images using gated MRF’s. In: NIPS 23 (2010)
Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comp. 18, 1527–1554 (2006)
Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)
Lowe, D.G.: Distinctive image features from scale–invariant keypoints. IJCV 60, 91–110 (2004)
Zhu, L., Lin, C., Huang, H., Chen, Y., Yuille, A.: Unsupervised structure learning: Hierarchical recursive composition, suspicious coincidence and competitive exclusion. In: ECCV (2008)
Hammond, D., Simoncelli, E.P.: Image modelling and denoising with orientation-adapted Gaussian scale mixtures. IEEE Trans. IP 17, 2089–2101 (2008)
Memisevic, R., Hinton, G.E.: Learning to represent spatial transformations with factored higher-order Boltzmann machines. Neural Comp. 22, 1473–1492 (2010)
Zemel, R.S., Williams, C.K.I., Mozer, M.C.: Lending direction to neural networks. Neural Networks 8, 503–512 (1995)
Mozer, M.C., Zemel, R.S., Behrmann, M., Williams, C.K.I.: Learning to segment images using dynamic feature binding. Neural Comp. 4, 650–665 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kivinen, J.J., Williams, C.K.I. (2011). Transformation Equivariant Boltzmann Machines. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2011. ICANN 2011. Lecture Notes in Computer Science, vol 6791. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21735-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-21735-7_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21734-0
Online ISBN: 978-3-642-21735-7
eBook Packages: Computer ScienceComputer Science (R0)