Orthogonality and Boolean Algebras for Deduction Modulo | SpringerLink
Skip to main content

Orthogonality and Boolean Algebras for Deduction Modulo

  • Conference paper
Typed Lambda Calculi and Applications (TLCA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6690))

Included in the following conference series:

  • 662 Accesses

Abstract

Originating from automated theorem proving, deduction modulo removes computational arguments from proofs by interleaving rewriting with the deduction process. From a proof-theoretic point of view, deduction modulo defines a generic notion of cut that applies to any first-order theory presented as a rewrite system. In such a setting, one can prove cut-elimination theorems that apply to many theories, provided they verify some generic criterion. Pre-Heyting algebras are a generalization of Heyting algebras which are used by Dowek to provide a semantic intuitionistic criterion called superconsistency for generic cut-elimination. This paper uses pre-Boolean algebras (generalizing Boolean algebras) and biorthogonality to prove a generic cut-elimination theorem for the classical sequent calculus modulo. It gives this way a novel application of reducibility candidates techniques, avoiding the use of proof-terms and simplifying the arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abrusci, V.M.: Phase semantics and sequent calculus for pure noncommutative classical linear propositional logic. Journal of Symbolic Logic 56(4), 1403–1451 (1991)

    Article  MATH  Google Scholar 

  2. Cousineau, D.: Complete reducibility candidates. In: PSTT 2009 (2009)

    Google Scholar 

  3. Ciabattoni, A., Terui, K.: Towards a semantic characterization of cut-elimination. Studia Logica 82(1), 95–119 (2006)

    Article  MATH  Google Scholar 

  4. Dowek, G., Hermant, O.: A simple proof that super-consistency implies cut elimination. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 93–106. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. Journal of Automated Reasoning 31(1), 33–72 (2003)

    Article  MATH  Google Scholar 

  6. Dowek, G.: Truth values algebras and proof normalization. In: Altenkirch, T., McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 110–124. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Dowek, G.: Fondements des systèmes de preuve. Course notes (2010)

    Google Scholar 

  8. Dowek, G., Werner, B.: Proof normalization modulo. Journal of Symbolic Logic 68(4), 1289–1316 (2003)

    Article  MATH  Google Scholar 

  9. Gimenez, S.: Programmer, Calculer et Raisonner avec les Réseaux de la Logique Linéaire. PhD thesis, Université Paris 7 (2009)

    Google Scholar 

  10. Girard, J.-Y.: Interprétation Fonctionnelle et Élimination des Coupures de l’Arithmétique dOrdre Supérieur. PhD thesis, Université Paris 7 (1972)

    Google Scholar 

  11. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)

    Article  MATH  Google Scholar 

  12. Krivine, J.-L.: Realizability in classical logic. Panoramas et synthèses 27, 197–229 (2009)

    MATH  Google Scholar 

  13. Lengrand, S., Miquel, A.: Classical F [omega], orthogonality and symmetric candidates. Annals of Pure and Applied Logic 153(1-3), 3–20 (2008)

    Article  MATH  Google Scholar 

  14. Okada, M.: Phase semantic cut-elimination and normalization proofs of first-and higher-order linear logic. Theoretical Computer Science 227(1-2), 333–396 (1999)

    Article  MATH  Google Scholar 

  15. Okada, M.: A uniform semantic proof for cut-elimination and completeness of various first and higher order logics. Theoretical Computer Science 281(1-2), 471–498 (2002)

    Article  MATH  Google Scholar 

  16. Tait, W.W.: A realizability interpretation of the theory of species. In: Parikh, R.J. (ed.) Logic Colloquium, pp. 240–251. Springer, Heidelberg (1975)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brunel, A., Hermant, O., Houtmann, C. (2011). Orthogonality and Boolean Algebras for Deduction Modulo. In: Ong, L. (eds) Typed Lambda Calculi and Applications. TLCA 2011. Lecture Notes in Computer Science, vol 6690. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21691-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21691-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21690-9

  • Online ISBN: 978-3-642-21691-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics