Context Separability Mediated by the Granular Layer in a Spiking Cerebellum Model for Robot Control | SpringerLink
Skip to main content

Context Separability Mediated by the Granular Layer in a Spiking Cerebellum Model for Robot Control

  • Conference paper
Advances in Computational Intelligence (IWANN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6691))

Included in the following conference series:

Abstract

In this paper, we study how a biologically-plausible cerebellum architecture can store and retrieve different robotic-arm internal models (in synaptic connections between granular layer and Purkinje cells) at the granule layer (dynamic modifications of a base robot-arm-plant model), and how the model microstructure and input signal representations can efficiently infer models in a robot control scenario during object manipulation. More specifically, we have evaluated the contribution of the granular layer to the ability of the cerebellum to generate corrective actions. To achieve this we have embedded a spiking cerebellar model into an analog control loop whose output commands a simulated robot arm. The performance results obtained by using a cerebellum which includes granular layer are compared to those using a cerebellum without this layer. The results show that this layer effectively contributes to the generation of accurate cerebellar corrections. This work represents a well defined case of study in the field of neurobotics, in which biologically plausible neural systems and robots are used to study the functionality of biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science. McGraw-Hill Professional Publishing, New York (2000)

    Google Scholar 

  2. Schweighofer, N., Doya, K., Lay, F.: Unsupervised learning of granule cell sparse codes enhances cerebellar adaptive control. Neuroscience 103(1), 35–40 (2001)

    Article  Google Scholar 

  3. Coenen, O.J.-M.D., Arnold, M., Courchesne, E., Jabri, M., Sejnowski, T.: A hypothesis for parallel fiber coding in the cerebellum. Society for Neuroscience Abstracts 25 (1999)

    Google Scholar 

  4. Coenen, O.J.-M.D., Arnold, M., Sejnowski, T., Jabri, M.: Parallel fiber coding in the cerebellum for life-long learning. Autonomous Robots 11(3), 291–297 (2001)

    Article  MATH  Google Scholar 

  5. Jorntell, H., Hansel, C.: Synaptic memories upside down: bidirectional plasticity at cerebellar parallel fiber-Purkinje cell synapses. Neuron. 52, 227–238 (2006)

    Article  Google Scholar 

  6. Meunier, C., Nadal, J.-P.: The Handbook of Brain Theory and NeuralNetworks. MIT Press, Cambridge (1995)

    Google Scholar 

  7. Brunel, N., Hakim, V., Isope, P., Nadal, J.P., Barbour, B.: Optimal information storage and the distribution of synaptic weights: perceptron versus Purkinje cells. Neuron. 43, 745–757 (2004)

    Google Scholar 

  8. Barbour, B.: Synaptic currents evoked in Purkinje cells by stimulating individual granule cells. Neuron. 11(4), 759–769 (1993)

    Article  Google Scholar 

  9. Ros, E., Carrillo, R.R., Ortigosa, E.M., Barbour, E.M., Agís, B.: Event-Driven Simulation Scheme for Spiking Neural Networks Using Lookup Tables to Characterize Neuronal Dynamics. Neural Computation 18, 2959–2993 (2006)

    Article  MATH  Google Scholar 

  10. Carrillo, R.R., Ros, E., Boucheny, E., Coenen, C.: A real-time spiking cerebellum model for learning robot control. Biosystems 94(1-2), 18–27 (2008), http://edlut.googlecode.com

    Article  Google Scholar 

  11. Butterfaß, J., Grebenstein, M., Liu, H., Hirzinger, G.: DLR Hand II: next generation of a dextrous robot hand. In: IEEE International Conference on Robotics and Automation, pp. 109–114 (2001)

    Google Scholar 

  12. Hirzinger, G., Butterfab, J., Fischer, M., Grebenstein, M., Hähnle, M., Liu, H., Shäfer, N., Sporer, I.: A mechatronics approach to the design of light-weight arms and multifingered hands. In: ICRA, pp. 46–54 (2000)

    Google Scholar 

  13. Kettner, R., Mahamud, S., Leung, H., Sittko, N., Houk, J., Peterson, B., Barto, A.: Prediction of complex two-dimensional trajectories by a cerebellar model of smooth pursuit eye movement. Journal of Neurophysiology 77(4), 2115–2130 (1997)

    Google Scholar 

  14. Haith, A., Vijayakumar, S.: Robustness of VOR and OKR adaptation under kinematics and dynamics transformations. In: Proceedings of 6th IEEE international conference on development and learning (ICDL 2007), London (2007)

    Google Scholar 

  15. Hoffmann, H., Petckos, G., Bitzer, S., Vijayakumar, S.: Sensor-assisted adaptive motor control under continuously varying context. In: International Conference on Informatics in Control, ICINCO (2007)

    Google Scholar 

  16. Kawato, M., Gomi, H.: A computational model of four regions of the cerebellum based on feedback-error learning. Biological Cybernetics 68(2), 95–103 (1992)

    Article  Google Scholar 

  17. Miller, L., Holdefer, R., Houk, J.C.: The role of the cerebellum in modulating voluntary limb movement commands. Archives Italiennes de Biologie 140(3), 175–183 (2002)

    Google Scholar 

  18. Ito, M.: Control of mental activities by internal models in the cerebellum. Brain Res. 886(1-2), 237–245 (2008)

    Article  Google Scholar 

  19. Luque, N., Garrido, J., Carrillo, R., Ros, E.: Cerebellar Spiking Engine: Towards Object Model Abstraction in Manipulation. In: IJCNN (July 2010)

    Google Scholar 

  20. Bliss, T., Lomo, T.: Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology 232, 331–356 (1973)

    Article  Google Scholar 

  21. Hansel, C., Linden, D., D’Angelo, E.: Beyond Parallel Fiber LTD: The Diversity of Synaptic and Non-Synaptic Plasticity in the Cerebellum. Nature Neuroscience 4, 467–475 (2001)

    Google Scholar 

  22. Ito, M., Kano, M.: Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neuroscience Letter 33, 253–258 (1982)

    Article  Google Scholar 

  23. Ito, M.: Long-term depression. Annu. Rev. Neurosci. 12, 85–102 (1989)

    Article  Google Scholar 

  24. Kawato, M., Wolpert, D.: Internal models for motor control. Novartis Foundation Symposium 218, 291–307 (1998)

    Google Scholar 

  25. Mapelli, J., Gandolfi, D., D’Angelo, E.: Combinatorial responses controlled by synaptic inhibition in the cerebellum granular layer. Journal of Neurophysiology 103, 250–261 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Luque, N.R., Garrido, J.A., Carrillo, R.R., Ros, E. (2011). Context Separability Mediated by the Granular Layer in a Spiking Cerebellum Model for Robot Control. In: Cabestany, J., Rojas, I., Joya, G. (eds) Advances in Computational Intelligence. IWANN 2011. Lecture Notes in Computer Science, vol 6691. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21501-8_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21501-8_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21500-1

  • Online ISBN: 978-3-642-21501-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics