Robustness of the “Hopfield Estimator” for Identification of Dynamical Systems | SpringerLink
Skip to main content

Robustness of the “Hopfield Estimator” for Identification of Dynamical Systems

  • Conference paper
Advances in Computational Intelligence (IWANN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6692))

Included in the following conference series:

Abstract

In previous work, a method for estimating the parameters of dynamical systems was proposed, based upon the stability properties of Hopfield networks. The resulting estimation is a dynamical system itself, and the analysis of its properties showed, under mild conditions, the convergence of the estimates towards the actual values of parameters. Also, it was proved that in the presence of noise in the measured signals, the estimation error remains asymptotically bounded. In this work, we aim at advancing in this robustness analysis, by considering deterministic disturbances, which do not fulfill the usual statistical hypothesis such as normality and uncorrelatedness. Simulations show that the estimation error asymptotically vanishes when the disturbances are additive. Thus the form of the perturbation affects critically the dynamical behaviour and magnitude of the estimation, which is a significant finding. The results suggest a promising robustness of the proposed method, in comparison to conventional techniques.

This work has been partially supported by the Spanish Ministerio de Ciencia e Innovación (project no. TIN2008-04985), the Junta de Andalucía (project no. P08-TIC-04026), and the Agencia Española de Cooperación Internacional para el Desarrollo (project no. D/030223/10).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abe, S.: Theories on the Hopfield Neural Networks. In: Proc. IEE International Joint Conference on Neural Networks, vol. I, pp. 557–564 (1989)

    Google Scholar 

  2. Alonso, H., Mendonça, T., Rocha, P.: Hopfield neural networks for on-line parameter estimation. Neural Networks 22(4), 450–462 (2009)

    Article  MATH  Google Scholar 

  3. Atencia, M., Joya, G., Sandoval, F.: Modelling the HIV-AIDS Cuban Epidemics with Hopfield Neural Networks. In: Mira, J., Álvarez, J. (eds.) IWANN 2003. LNCS, vol. 2687, pp. 1053–1053. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Atencia, M., Joya, G., Sandoval, F.: Dynamical Analysis of Continuous Higher Order Hopfield Networks for Combinatorial Optimization. Neural Computation 17(8), 1802–1819 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Atencia, M., Joya, G., Sandoval, F.: Hopfield Neural Networks for Parametric Identification of Dynamical Systems. Neural Processing Letters 21(2), 143–152 (2005)

    Article  MATH  Google Scholar 

  6. Atencia, M.A., Joya, G., García-Garaluz, E., de Arazoza, H., Sandoval, F.: Estimation of the Rate of Detection of Infected Individuals in an Epidemiological Model. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 948–955. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Ghogho, M.: Maximum likelihood estimation of amplitude-modulated time series. Signal Processing 75(2), 99–116 (1999)

    Article  MATH  Google Scholar 

  8. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America 79(8), 2554–2558 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proceedings of the National Academy of Sciences of the United States of America 81(10), 3088–3092 (1984)

    Article  Google Scholar 

  10. Hopfield, J.J., Tank, D.W.: “Neural” computation of decisions in optimization problems. Biological Cybernetics 52, 141–152 (1985)

    MathSciNet  MATH  Google Scholar 

  11. Khalil, H.: Nonlinear systems, 2nd edn. Prentice Hall, Upper Saddle River (1996)

    Google Scholar 

  12. Ljung, L.: System identification: theory for the user. Prentice-Hall, Englewood Cliffs (1999)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Atencia, M., Joya, G., Sandoval, F. (2011). Robustness of the “Hopfield Estimator” for Identification of Dynamical Systems. In: Cabestany, J., Rojas, I., Joya, G. (eds) Advances in Computational Intelligence. IWANN 2011. Lecture Notes in Computer Science, vol 6692. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21498-1_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21498-1_65

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21497-4

  • Online ISBN: 978-3-642-21498-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics