Abstract
In the inspection of a known environment by a team of robots, communication problems may exists between members of the team, even, due to the hostile environment these members can be damaged. In this paper, a redundant, robust and fault tolerant method to cover a known environment using a multi-agent system and where the communications are not guaranteed is presented. Through a simple auction system for cooperation and coordination, the aim of this method is to provide an effective way to solve communication or hardware failures problems in the inspection task of a known environment. We have conducted several experiments in order to verify and validate the proposed approach. The results are commented and compared to other methods.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Akyildiz, I., Sun, Z., Vuran, M.C.: Signal propagation techniques for wireless underground communication networks. Physical Communication 2(3), 167–183 (2009)
Breazeal, C.: Emotion and sociable humanoid robots. International Journal of Human-Computer Studies 59(1-2), 119–155 (2003)
Burdakov, O., Doherty, P., Holmberg, K., Kvarnström, J., Olsson, P.M.: Positioning unmanned aerial vehicles as communication relays for surveillance tasks. In: Proceedings of the 5th Robotics: Science and Systems Conference (RSS), Seattle, WA. Citeseer (2009)
Burgard, W., Moors, M., Stachniss, C., Schneider, F.: Coordinated multi-robot exploration. IEEE Transactions on Robotics 21(3), 376–386 (2005)
Chehri, A., Fortier, P., Tardif, P.: Application of Ad-hoc sensor networks for localization in underground mines. In: IEEE Annual Wireless and Microwave Technology Conference, WAMICON 2006, pp. 1–4. IEEE, Los Alamitos (2007)
Dasgupta, P.: A multiagent swarming system for distributed automatic target recognition using unmanned aerial vehicles. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 38(3), 549–563 (2008)
Duro, R.J., Graña, M., Lope, D.: On the potential contributions of hybrid intelligent approaches to multicomponent robotic system development. Information Sciences 180(14), 2635–2648 (2010)
Emery, R., Sikorski, K., Balch, T.: Protocols for collaboration, coordination and dynamic role assignment in a robot team. In: Proceedings of IEEE International Conference on Robotics and Automation ICRA 2002, vol. 3, pp. 3008–3015. IEEE, Los Alamitos (2002)
Kawaguchi, Y., Yoshida, I., Kurumatani, H., Kikuta, T., Yamada, Y.: Internal pipe inspection robot. In: Proceedings of IEEE International Conference on Robotics and Automation, 1995, vol. 1, pp. 857–862. IEEE, Los Alamitos (2002)
Kurnaz, S., Cetin, O., Kaynak, O.: Fuzzy logic based approach to design of flight control and navigation tasks for autonomous unmanned aerial vehicles. Journal of Intelligent and Robotic Systems 54(1), 229–244 (2009)
Maio, D., Rizzi, S.: A multi-agent approach to environment exploration. IEEE Transactions on Pattern Analysis Machine Intelligence 18(11) (1996)
Mathis, P.: Graphs and Networks: Multilevel Modeling (Geographical Information Systems Series) (2007)
Osuka, K., Kitajima, H.: Development of mobile inspection robot for rescue activities: MOIRA. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2003, vol. 4, pp. 3373–3377. IEEE, Los Alamitos (2003)
Robins, B., Dautenhahn, K., Boekhorst, R., Billard, A.: Robotic assistants in therapy and education of children with autism: Can a small humanoid robot help encourage social interaction skills? Universal Access in the Information Society 4(2), 105–120 (2005)
Rome, E., Hertzberg, J., Kirchner, F., Licht, U., Christaller, T.: Towards autonomous sewer robots: the MAKRO project. Urban Water 1(1), 57–70 (1999)
Shoham, Y., Leyton-Brown, K.: Multiagent systems: algorithmic, game-theoretic, and logical foundations. Cambridge University Press, Cambridge (2008)
Silva, A., Vuran, M.: Empirical evaluation of wireless underground-to-underground communication in wireless underground sensor networks. Distributed Computing in Sensor Systems, 231–244 (2009)
Thrun, S., Thayer, S., Whittaker, W., Baker, C., Burgard, W., Ferguson, D., Hahnel, D., Montemerlo, D., Morris, A., Omohundro, Z., et al.: Autonomous exploration and mapping of abandoned mines. Robotics & Automation Magazine 11(4), 79–91 (2005)
Zhang, Y., Yan, G.: In-pipe inspection robot with active pipe-diameter adaptability and automatic tractive force adjusting. Mechanism and Machine Theory 42(12), 1618–1631 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Martín-Ortiz, M., Pereda, J., de Lope, J., de la Paz, F. (2011). Selective Method Based on Auctions for Map Inspection by Robotic Teams. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds) Foundations on Natural and Artificial Computation. IWINAC 2011. Lecture Notes in Computer Science, vol 6686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21344-1_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-21344-1_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21343-4
Online ISBN: 978-3-642-21344-1
eBook Packages: Computer ScienceComputer Science (R0)