Variation of Background Knowledge in an Industrial Application of ILP | SpringerLink
Skip to main content

Variation of Background Knowledge in an Industrial Application of ILP

  • Conference paper
Inductive Logic Programming (ILP 2010)

Abstract

In several recent papers ILP has been applied to Systems Biology problems, in which it has been used to fill gaps in the descriptions of biological networks. In the present paper we describe two new applications of this type in the area of plant biology. These applications are of particular interest to the agrochemical industry in which improvements in plant strains can have benefits for modelling crop development. The background knowledge in these applications is extensive and is derived from public databases in a Prolog format using a new system called Ondex (developers BBSRC Rothamsted). In this paper we explore the question of how much of this background knowledge it is beneficial to include, taking into account accuracy increases versus increases in learning time. The results indicate that relatively shallow background knowledge is needed to achieve maximum accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Syngenta Ltd., http://www.syngenta.com/en/index.html

  2. Syngenta University Innovation Centre, http://www3.imperial.ac.uk/syngenta-uic

  3. Chen, J., Muggleton, S.H., Santos, J.: Learning probabilistic logic models from probabilistic examples. Machine Learning 73(1), 55–85 (2008), 10.1007/s10994-008-5076-4

    Article  Google Scholar 

  4. Mueller, L.A., et al.: The SOL Genomics Network. A Comparative Resource for Solanaceae Biology and Beyond. Plant Physiology 138(3), 1310–1317 (2005)

    Article  Google Scholar 

  5. Goble, C., Stevens, R.: State of the nation in data integration for bioinformatics. Journal of Biomedical Informatics 41(5), 687–693 (2008)

    Article  Google Scholar 

  6. Kitano, H.: Computational systems biology. Nature 420, 206–210 (2002)

    Article  Google Scholar 

  7. Kohler, J., Baumbach, J., Taubert, J., Specht, M., Skusa, A., Ruegg, A., Rawlings, C., Verrier, P., Philippi, S.: Graph-based analysis and visualization of experimental results with ONDEX. Bioinformatics 22(11), 1383–1390 (2006)

    Article  Google Scholar 

  8. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society 7(1), 48–50 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  9. LycoCyc. Solanum lycopersicum database, http://solcyc.solgenomics.net//LYCO/

  10. Muggleton, S.H., Bryant, C.H.: Theory completion using inverse entailment. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 130–146. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., Kanehisa, M.: KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucl. Acids Res. 27(1), 29–34 (1999)

    Article  Google Scholar 

  12. Rubtsov, D.V., Waterman, C., Currie, R.A., Waterfield, C., Salazar, J.D., Wright, J., Griffin, J.L.: Application of a bayesian deconvolution approach for high-resolution 1h nmr spectra to assessing the metabolic effects of acute phenobarbital exposure in liver tissue. Analytical Chemistry 82(11), 4479–4485 (2010)

    Article  Google Scholar 

  13. Tamaddoni-Nezhad, A., Chaleil, R., Kakas, A., Muggleton, S.H.: Application of abductive ILP to learning metabolic network inhibition from temporal data. Machine Learning 64, 209–230 (2006), doi:10.1007/s10994-006-8988-x

    Article  MATH  Google Scholar 

  14. Waterman, C., Currie, R., Cottrell, L., Dow, J., Wright, J., Waterfield, C., Griffin, J.: An integrated functional genomic study of acute phenobarbital exposure in the rat. BMC Genomics 11(1), 9 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Muggleton, S.H. et al. (2011). Variation of Background Knowledge in an Industrial Application of ILP. In: Frasconi, P., Lisi, F.A. (eds) Inductive Logic Programming. ILP 2010. Lecture Notes in Computer Science(), vol 6489. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21295-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21295-6_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21294-9

  • Online ISBN: 978-3-642-21295-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics