Parallel Evolutionary Algorithms for Energy Aware Scheduling | SpringerLink
Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 362))

Abstract

Reducing energy consumption is an increasingly important issue in computing and embedded systems. In computing systems, minimizing energy consumption can significantly reduce the amount of energy bills. The demand for computing systems steadily increases and the cost of energy continues to rise. In embedded systems, reducing the use of energy allows to extend the autonomy of these systems. In addition, the reduction of energy decreases greenhouse gas emissions. Therefore, many researches are carried out to develop new methods in order to consume less energy. This chapter gives an overview of the main methods used to reduce the energy consumption in computing and embedded systems. As a use case and to give an example of a method, the chapter describes our new parallel bi-objective hybrid genetic algorithm that takes into account the completion time and the energy consumption. In terms of energy consumption, the obtained results show that our approach outperforms previous scheduling methods by a significant margin. In terms of completion time, the obtained schedules are also shorter than those of other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berl, A., de Meer, H.: A virtualized energy-efficient office environment. In: Proceedings of the 1st International Conference on Energy-Efficient Computing and Networking, e-Energy 2010, pp. 11–20. ACM, New York (2010)

    Chapter  Google Scholar 

  2. Bozdag, D., Catalyurek, U., Ozguner, F.: A task duplication based bottom-up scheduling algorithm for heterogeneous environments. In: Proc. Int. Parallel and Distributed Processing Symp. (2005)

    Google Scholar 

  3. Cohoon, J.P., Hedge, S.U., Martin, W.N., Richards, D.: Punctuated equilibria: A parallel genetic algorithm. In: Grefenstette, J.J., Lawrence Erlbaum Associates (eds.) Proceedings of the Second International Conference on Genetic Algorithms, p. 148 (1987)

    Google Scholar 

  4. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to algorithms. MIT Press, Cambridge (1990)

    MATH  Google Scholar 

  5. de Langen, P., Juurlink, B.: Trade-offs between voltage scaling and processor shutdown for low-energy embedded multiprocessors. In: Vassiliadis, S., Bereković, M., Hämäläinen, T.D. (eds.) SAMOS 2007. LNCS, vol. 4599, pp. 75–85. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Freeh, V.W., Kappiah, N., Lowenthal, D.K., Bletsch, T.K.: Just-in-time dynamic voltage scaling: Exploiting inter-node slack to save energy in mpi programs. J. Parallel Distrib. Comput. 68, 1175–1185 (2008)

    Article  Google Scholar 

  7. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of np-completeness, pp. 238–239. W.H. Freeman and Co., New York (1979)

    MATH  Google Scholar 

  8. Hlavacs, H., Weidlich, R., Hummel, K., Houyou, A., Berl, A., de Meer, H.: Distributed energy efficiency in future home environments. Annals of Telecommunications 63, 473–485 (2008), doi:10.1007/s12243-008-0045-2

    Article  Google Scholar 

  9. Intel pentium m processor datasheet (2004)

    Google Scholar 

  10. Kang, J., Ranka, S.: Energy-efficient dynamic scheduling on parallel machines. In: Sadayappan, P., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.) HiPC 2008. LNCS, vol. 5374, pp. 208–219. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Khan, S.U., Ahmad, I.: A cooperative game theoretical technique for joint optimization of energy consumption and response time in computational grids. IEEE Transactions on Parallel and Distributed Systems 20(3), 346–360 (2009)

    Article  MathSciNet  Google Scholar 

  12. Kimura, H., Sato, M., Hotta, Y., Boku, T., Takahashi, D.: Emprical study on reducing energy of parallel programs using slack reclamation by dvfs in a power-scalable high performance cluster. In: IEEE International Conference on Cluster Computing, pp. 1–10 (2006)

    Google Scholar 

  13. Koch, G.: Discovering multi-core: Extending the benefits of moore’s law. Technology Intel Magazine (2005)

    Google Scholar 

  14. Koomey, J.G.: Estimating total power consumption by servers in the u.s. and the world

    Google Scholar 

  15. Choon Lee, Y., Zomaya, A.Y.: “Minimizing energy consumption for precedence-constrained applications using dynamic voltage scaling. In: CCGRID 2009: Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, pp. 92–99 (2009)

    Google Scholar 

  16. Lee, Y., Zomaya, A.Y.: Energy efficient utilization of resources in cloud computing systems. The Journal of Supercomputing, 1–13 (2010), doi:10.1007/s11227-010-0421-3

    Google Scholar 

  17. Lee, Y.C., Zomaya, A.Y.: Minimizing energy consumption for precedence-constrained applications using dynamic voltage scaling. In: Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, CCGRID 2009, pp. 92–99. IEEE Computer Society, Washington, DC, USA (2009)

    Chapter  Google Scholar 

  18. Lin, M., Ding, C.: Parallel genetic algorithms for DVS scheduling of distributed embedded systems. In: Perrott, R., Chapman, B.M., Subhlok, J., de Mello, R.F., Yang, L.T. (eds.) HPCC 2007. LNCS, vol. 4782, pp. 180–191. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Liu, C., Qin, X., Kulkarni, S., Wang, C., Li, S., Manzanares, A., Baskiyar, S.: Distributed energy-efficient scheduling for data-intensive applications with deadline constraints on data grids. In: IEEE International Performance, Computing and Communications Conference, IPCCC 2008, pp. 26–33 (2008)

    Google Scholar 

  20. Miao, L., Qi, Y., Hou, D., Wu, C.L., Dai, Y.H.: Energy saving task scheduling for heterogeneous cmp system based on multi-objective fuzzy genetic algorithm. In: IEEE International Conference on Systems, Man and Cybernetics, SMC 2009, pp. 3923–3927 (2009)

    Google Scholar 

  21. Min, R., Furrer, T., Chandrakasan, A.: Dynamic voltage scaling techniques for distributed microsensor networks. In: Proc. IEEE Workshop on VLSI, pp. 43–46 (2000)

    Google Scholar 

  22. Nathuji, R., Schwan, K.: Virtualpower: Coordinated power management in virtualized enterprise systems. In: Proceedings of Twenty-First ACM SIGOPS Symposium on Operating Systems Principles, SOSP 2007, pp. 265–278. ACM, New York (2007)

    Chapter  Google Scholar 

  23. Rizvandi, N.B., Taheri, J., Zomaya, A.Y., Lee, Y.C.: Linear combinations of dvfs-enabled processor frequencies to modify the energy-aware scheduling algorithms. In: Proc. of IEEE International Symposium on Cluster Computing and the Grid, pp. 388–397 (2010)

    Google Scholar 

  24. Ruan, X., Qin, X., Zong, Z., Bellam, K., Nijim, M.: An energy-efficient scheduling algorithm using dynamic voltage scaling for parallel applications on clusters. In: Proceedings of 16th International Conference on Computer Communications and Networks, ICCCN 2007, pp. 735–740 (2007)

    Google Scholar 

  25. Simunic, T., Benini, L., Acquaviva, A., Glynn, P., De Micheli, G.: Dynamic voltage scaling and power management for portable systems. In: Proceedings of the 38th Annual Design Automation Conference, DAC 2001, pp. 524–529. ACM, New York (2001)

    Chapter  Google Scholar 

  26. Srikantaiah, S., Kansal, A., Zhao, F.: Energy Aware Consolidation for Cloud Computing. In: Proceedings of HotPower 2008 Workshop on Power Aware Computing and Systems. USENIX (2008)

    Google Scholar 

  27. Topcuouglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE Trans. Parallel Dist. Systems 13(3), 260–274 (2002)

    Article  Google Scholar 

  28. Zhuo, J., Chakrabarti, C.: Energy-efficient dynamic task scheduling algorithms for dvs systems. ACM Trans. Embed. Comput. Syst. 7(17), 1–25 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kessaci, Y., Mezmaz, M., Melab, N., Talbi, EG., Tuyttens, D. (2011). Parallel Evolutionary Algorithms for Energy Aware Scheduling. In: Bouvry, P., González-Vélez, H., Kołodziej, J. (eds) Intelligent Decision Systems in Large-Scale Distributed Environments. Studies in Computational Intelligence, vol 362. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21271-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21271-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21270-3

  • Online ISBN: 978-3-642-21271-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics