Automatic Learning of Subclasses of Pattern Languages | SpringerLink
Skip to main content

Automatic Learning of Subclasses of Pattern Languages

  • Conference paper
Language and Automata Theory and Applications (LATA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6638))

  • 689 Accesses

Abstract

Automatic classes are classes of languages for which a finite automaton can decide membership question for the languages in the class, in a uniform way, given an index for the language. For alphabet size of at least 4, every automatic class of erasing pattern languages is contained, for some constant n, in the class of all languages generated by patterns which contain (1) every variable only once and (2) at most n symbols after the first occurrence of a variable. It is shown that such a class is automatically learnable using a learner with long-term memory bounded by the length of the first example seen. The study is extended to show the learnability of related classes such as the class of unions of two pattern languages of the above type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angluin, D.: Finding patterns common to a set of strings. Journal of Computer and System Sciences 21, 46–62 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Angluin, D.: Inductive inference of formal languages from positive data. Information and Control 45, 117–135 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  3. Angluin, D.: Inference of reversible languages. Journal of the ACM 29, 741–765 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Angluin, D.: Learning regular sets from queries and counter-examples. Information and Computation 75, 87–106 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bārzdiņš, J.: Inductive inference of automata, functions and programs. In: Proceedings of the 20th International Congress of Mathematicians, Vancouver, pp. 455–460 (1974) (in Russian; English translation in American Mathematical Society Translations: Series 2, 109:107-112, 1977)

    Google Scholar 

  6. Blumensath, A., Grädel, E.: Automatic structures. In: 15th Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 51–62. IEEE Computer Society, Los Alamitos (2000)

    Google Scholar 

  7. Fernau, H.: Identification of function distinguishable languages. Theoretical Computer Science 290, 1679–1711 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Freivalds, R., Kinber, E., Smith, C.: On the impact of forgetting on learning machines. Journal of the ACM 42, 1146–1168 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gold, E.M.: Language identification in the limit. Information and Control 10, 447–474 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hodgson, B.R.: Décidabilité par automate fini. Annales des sciences mathématiques du Québec 7, 39–57 (1983)

    MathSciNet  MATH  Google Scholar 

  11. Jain, S., Luo, Q., Stephan, F.: Learnability of automatic classes. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 321–332. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Jain, S., Ong, Y.S., Pu, S., Stephan, F.: On automatic families. Technical Report TRB1/10, School of Computing, National University of Singapore (2010)

    Google Scholar 

  13. Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  14. Kinber, E., Stephan, F.: Language learning from texts: Mind changes, limited memory and monotonicity. Information and Computation 123, 224–241 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lange, S., Wiehagen, R.: Polynomial time inference of arbitrary pattern languages. New Generation Computing 8, 361–370 (1991)

    Article  MATH  Google Scholar 

  16. Lange, S., Zeugmann, T.: Incremental learning from positive data. Journal of Computer and System Sciences 53, 88–103 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lange, S., Zeugmann, T., Zilles, S.: Learning indexed families of recursive languages from positive data: A survey. Theoretical Computer Science 397, 194–232 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Osherson, D., Stob, M., Weinstein, S.: Systems that Learn: An Introduction to Learning Theory for Cognitive and Computer Scientists. MIT Press, Cambridge (1986)

    Google Scholar 

  19. Pitt, L.: Inductive inference, DFAs, and computational complexity. In: Jantke, K.P. (ed.) AII 1989. LNCS (LNAI), vol. 397, pp. 18–44. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  20. Reidenbach, D.: A non-learnable class of E-pattern languages. Theoretical Computer Science 350, 91–102 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rubin, S.: Automatic Structures. PhD thesis, The University of Auckland (2004)

    Google Scholar 

  22. Rubin, S.: Automata presenting structures: a survey of the finite string case. The Bulletin of Symbolic Logic 14, 169–209 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shinohara, T.: Polynomial time inference of extended regular pattern languages. In: Goto, E., Furukawa, K., Nakajima, R., Nakata, I., Yonezawa, A. (eds.) RIMS 1982. LNCS, vol. 147, pp. 115–127. Springer, Heidelberg (1983)

    Chapter  Google Scholar 

  24. Wiehagen, R.: Limes-Erkennung rekursiver Funktionen durch spezielle Strategien. Elektronische Informationsverarbeitung und Kybernetik (EIK) 12, 93–99 (1976)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Case, J., Jain, S., Le, T.D., Ong, Y.S., Semukhin, P., Stephan, F. (2011). Automatic Learning of Subclasses of Pattern Languages. In: Dediu, AH., Inenaga, S., Martín-Vide, C. (eds) Language and Automata Theory and Applications. LATA 2011. Lecture Notes in Computer Science, vol 6638. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21254-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21254-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21253-6

  • Online ISBN: 978-3-642-21254-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics