Evolutionary Learning of Regularization Networks with Multi-kernel Units | SpringerLink
Skip to main content

Evolutionary Learning of Regularization Networks with Multi-kernel Units

  • Conference paper
Advances in Neural Networks – ISNN 2011 (ISNN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6675))

Included in the following conference series:

  • 1879 Accesses

Abstract

Regularization networks represent an important supervised learning method applicable for regression and classification tasks. They benefit from very good theoretical background, although the presence of meta parameters is their drawback. The meta parameters, including the type of kernel function, are typically supposed to be given in advance and come ready as an input of the algorithm. In this paper, we propose multi-kernel functions, namely product kernel functions and composite kernel functions. The choice of kernel function becomes part of the optimization process, for which a new evolutionary learning algorithm is introduced that deals with different kernel functions, including composite kernels. The results are demonstrated on experiments with benchmark tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Girosi, F., Jones, M., Poggio, T.: Regularization theory and Neural Networks architectures. Neural Computation 2, 219–269 (1995)

    Article  Google Scholar 

  2. Kůrková, V.: Learning from data as an inverse problem. In: Antoch, J. (ed.) Computational Statistics, pp. 1377–1384. Physica Verlag, Heidelberg (2004)

    Google Scholar 

  3. Poggio, T., Girosi, F.: A theory of networks for approximation and learning. Technical report, Cambridge, MA, USA (1989); A. I. Memo No. 1140, C.B.I.P. Paper No. 31

    Google Scholar 

  4. Poggio, T., Smale, S.: The mathematics of learning: Dealing with data. Notices of the AMS 50, 536–544 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Neruda, R., Vidnerová, P.: Genetic algorithm with species for regularization network metalearning. In: Papasratorn, B., Lavangnananda, K., Chutimaskul, W., Vanijja, V. (eds.) IAIT 2010. CCIS, vol. 114, pp. 192–201. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Kudová, P., Šámalová, T.: Product kernel regularization networks. In: Ribeiro, B., Albrecht, R.F., Dobnikar, A., Pearson, D.W., Steele, N.C. (eds.) Adaptive and Natural Computing Algorithms, pp. 433–436. Springer, Wien (2005)

    Google Scholar 

  7. Kudová, P., Šámalová, T.: Sum and product kernel regularization networks. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 56–65. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1996)

    MATH  Google Scholar 

  9. Prechelt, L.: PROBEN1 – a set of benchmarks and benchmarking rules for neural network training algorithms. Technical Report 21/94, Universitaet Karlsruhe (September 1994)

    Google Scholar 

  10. LAPACK: Linear algebra package, http://www.netlib.org/lapack/

  11. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vidnerová, P., Neruda, R. (2011). Evolutionary Learning of Regularization Networks with Multi-kernel Units. In: Liu, D., Zhang, H., Polycarpou, M., Alippi, C., He, H. (eds) Advances in Neural Networks – ISNN 2011. ISNN 2011. Lecture Notes in Computer Science, vol 6675. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21105-8_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21105-8_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21104-1

  • Online ISBN: 978-3-642-21105-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics