An Optimized Algorithm for the Evaluation of Local Singularity Exponents in Digital Signals | SpringerLink
Skip to main content

An Optimized Algorithm for the Evaluation of Local Singularity Exponents in Digital Signals

  • Conference paper
Combinatorial Image Analysis (IWCIA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6636))

Included in the following conference series:

Abstract

Recent works show that the determination of singularity exponents in images can be useful to assess their information content, and in some cases they can cast additional information about underlying physical processes. However, the concept of singularity exponent is associated to differential calculus and thus cannot be easily translated to a digital context, even using wavelets. In this work we show that a recently patented algorithm allows obtaining precise, meaningful values of singularity exponents at every point in the image by the use of a discretized combinatorial mask, which is an extension of a particular wavelet basis. This mask is defined under the hypothesis that singularity exponents are a measure not only of the degree of regularity of the image, but also of the reconstructibility of a signal from their points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aurell, E., Boffetta, G., Crisanti, A., Palading, G., Vulpiani, A.: Predictability in the large: an extension of the concept of lyapunov exponent. Journal of Physics A 30, 1–26 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boffetta, G., Cencini, M., Falcioni, M., Vulpiani, A.: Predictability: a way to characterize complexity. Physics reports 356(6), 367–474 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Daubechies, I.: Ten lectures on wavelets. CBMS-NSF Series in App. Math. Capital City Press, Montpelier (1992)

    Book  MATH  Google Scholar 

  4. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. John Wiley and Sons, Chichester (1990)

    MATH  Google Scholar 

  5. Frisch, U.: Turbulence: The legacy of A.N. Kolmogorov. Cambridge Univ. Press, Cambridge (1995)

    MATH  Google Scholar 

  6. Isern-Fontanet, J., Turiel, A., Garcia-Ladona, E., Font, J.: Microcanonical multifractal formalism: application to the estimation of ocean surface velocities. Journal of Geophysical Research 112, C05024 (2007)

    Google Scholar 

  7. Jaffard, S.: Multifractal formalism for functions. I. Results valid for all functions. SIAM Journal of Mathematical Analysis 28(4), 944–970 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jones, C.L., Lonergan, G.T., Mainwaring, D.E.: Wavelet packet computation of the hurst exponent. J. Phys. A: Math. Gen. 29(10), 2509 (1996)

    Article  MATH  Google Scholar 

  9. Mallat, S., Huang, W.L.: Singularity detection and processing with wavelets. IEEE Trans. in Inf. Th. 38, 617–643 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mallat, S., Zhong, S.: Wavelet transform maxima and multiscale edges. In: Ruskai, M.B., et al. (eds.) Wavelets and their Applications. Jones and Bartlett, Boston (1991)

    Google Scholar 

  11. Mallat, S., Zhong, S.: Characterization of signals from multiscale edges. IEEE Trans. on Pattern Analysis and Machine Intelligence 14, 710–732 (1992)

    Article  Google Scholar 

  12. Mallat, S.: A Wavelet Tour of Signal Processing, 2nd edn. Academic Press, London (1999)

    MATH  Google Scholar 

  13. Muzy, J.F., Bacry, E., Arneodo, A.: Wavelets and multifractal formalism for singular signals: Application to turbulence data. Physical Review Letters 67, 3515–3518 (1991)

    Article  Google Scholar 

  14. Parisi, G., Frisch, U.: On the singularity structure of fully developed turbulence. In: Ghil, M., Benzi, R., Parisi, G. (eds.) Turbulence and Predictability in Geophysical Fluid Dynamics. Proc. Intl. School of Physics E. Fermi, pp. 84–87. North Holland, Amsterdam (1985)

    Google Scholar 

  15. Pont, O., Turiel, A., Pérez-Vicente, C.: Application of the microcanonical multifractal formalism to monofractal systems. Physical Review E 74, 61110 (2006)

    Article  MathSciNet  Google Scholar 

  16. Pont, O., Turiel, A., Pérez-Vicente, C.: Description, modeling and forecasting of data with optimal wavelets. Journal of Economic Interaction and Coordination 4, 39–54 (2009)

    Article  Google Scholar 

  17. Pont, O., Turiel, A., Pérez-Vicente, C.: Empirical evidences of a common multifractal signature in economic, biological and physical systems. Physica A 388, 2025–2035 (2009)

    Article  Google Scholar 

  18. She, Z.S., Leveque, E.: Universal scaling laws in fully developed turbulence. Physical Review Letters 72, 336–339 (1994)

    Article  Google Scholar 

  19. Simonsen, I., Hansen, A., Magnar, O.: Determination of the hurst exponent by use of wavelet transforms. Phys. Rev. E 58(3), 2779–2787 (1998)

    Article  Google Scholar 

  20. Struzik, Z.R.: Determining local singularity strengths and their spectra with the wavelet transform. Fractals 8(2), 163–179 (2000)

    Article  Google Scholar 

  21. Turiel, A.: Relevance of multifractal textures in static images. Electronic Letters on Computer Vision and Image Analysis 1(1), 35–49 (2003)

    MathSciNet  Google Scholar 

  22. Turiel, A.: Method and system for the singularity analysis of digital signals, patent registered under number PCT/ES2008/070195 (2008)

    Google Scholar 

  23. Turiel, A., Grazzini, J., Yahia, H.: Multiscale techniques for the detection of precipitation using thermal IR satellite images. IEEE Geoscience and Remote Sensing Letters 2(4), 447–450 (2005), doi:10.1109/LGRS.2005.852712

    Article  Google Scholar 

  24. Turiel, A., Isern-Fontanet, J., García-Ladona, E., Font, J.: Multifractal method for the instantaneous evaluation of the stream function in geophysical flows. Physical Review Letters 95(10), 104502 (2005), doi:10.1103/PhysRevLett.95.104502

    Article  Google Scholar 

  25. Turiel, A., Mato, G., Parga, N., Nadal, J.P.: The self-similarity properties of natural images resemble those of turbulent flows. Physical Review Letters 80, 1098–1101 (1998)

    Article  Google Scholar 

  26. Turiel, A., Nieves, V., García-Ladona, E., Font, J., Rio, M.H., Larnicol, G.: The multifractal structure of satellite temperature images can be used to obtain global maps of ocean currents. Ocean Science 5, 447–460 (2009)

    Article  Google Scholar 

  27. Turiel, A., Parga, N.: The multi-fractal structure of contrast changes in natural images: from sharp edges to textures. Neural Computation 12, 763–793 (2000)

    Article  Google Scholar 

  28. Turiel, A., Pérez-Vicente, C.: Role of multifractal sources in the analysis of stock market time series. Physica A 355, 475–496 (2005)

    Article  Google Scholar 

  29. Turiel, A., Pérez-Vicente, C., Grazzini, J.: Numerical methods for the estimation of multifractal singularity spectra on sampled data: a comparative study. Journal of Computational Physics 216(1), 362–390 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Turiel, A., del Pozo, A.: Reconstructing images from their most singular fractal manifold. IEEE Trans. on Im. Proc. 11, 345–350 (2002)

    Article  MathSciNet  Google Scholar 

  31. Turiel, A., Solé, J., Nieves, V., Ballabrera-Poy, J., García-Ladona, E.: Tracking oceanic currents by singularity analysis of micro-wave sea surface temperature images. Remote Sensing of Environment 112, 2246–2260 (2008)

    Article  Google Scholar 

  32. Turiel, A., Yahia, H., Pérez-Vicente, C.: Microcanonical multifractal formalism: a geometrical approach to multifractal systems. Part I: Singularity analysis. Journal of Physics A 41, 15501 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pont, O., Turiel, A., Yahia, H. (2011). An Optimized Algorithm for the Evaluation of Local Singularity Exponents in Digital Signals. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds) Combinatorial Image Analysis. IWCIA 2011. Lecture Notes in Computer Science, vol 6636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21073-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21073-0_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21072-3

  • Online ISBN: 978-3-642-21073-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics