Evolutionary Optimisation Techniques to Estimate Input Parameters in Environmental Emergency Modelling | SpringerLink
Skip to main content

Evolutionary Optimisation Techniques to Estimate Input Parameters in Environmental Emergency Modelling

  • Chapter
Computational Optimization and Applications in Engineering and Industry

Part of the book series: Studies in Computational Intelligence ((SCI,volume 359))

  • 1216 Accesses

Abstract

Parameter estimation in environmentalmodelling is essential for input parameters, which are difficult or impossible to measure. Especially in simulations for disaster propagation prediction, where hard real-time constraints have to be met to avoid tragedy, the additionally introduced computational burden of advanced global optimisation algorithms still hampers their use in many cases and poses an ongoing challenge. In this chapter we demonstrate how modifications of a Genetic Algorithm (GA) are able to decrease time-consuming fitness evaluations and hence to speed up parameter calibration. Knowledge from past observed catastrophe behaviour is used to guide the GA during various phases towards promising solution areas resulting in a fast convergence. Together with parallel computing techniques it becomes a viable estimation approach in environmental emergency modelling. Encouraging results were obtained in predicting forest fire spread.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdalhaq, B., Cortés, A., Margalef, T., Luque, E.: Accelerating optimization of input parameters in wildland fire simulation. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2004. LNCS, vol. 3019, pp. 1067–1074. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Annan, J.D., Hargreaves, J.C.: Efficient estimation and ensemble generation in climate modelling. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 365(1857), 2077–2088 (2007)

    Article  MathSciNet  Google Scholar 

  3. Berlik, S.: A directed mutation framework for evolutionary algorithms. In: Proceedings of the International Conference on Soft Computing, MENDEL (2004)

    Google Scholar 

  4. Berry, A., Vamplew, P.: PoD can mutate: A simple dynamic directed mutation approach for genetic algorithms. In: Proceedings AISAT 2004 The 2nd International Conference on Artificial Intelligence in Science and Technology, pp. 200–205 (2004)

    Google Scholar 

  5. Bevins, C.D.: firelib user manual and technical reference (October 1996), http://www.fire.org/downloads/fireLib/1.0.4/doc.html (Cited October 28, 2010)

  6. Bonissone, P.P., Subbu, R., Eklund, N., Kiehl, T.R.: Evolutionary algorithms + domain knowledge = real-world evolutionary computation. IEEE Transactions on Evolutionary Computation 10(3), 256–280 (2006)

    Article  Google Scholar 

  7. Bulatewicz, T., Andresen, D., Welcha, S., Jina, W., Dasb, S., Miller, M.: A software system for scalable parameter estimation on clusters. In: Proceedings of the 8th LCI International Conference on High-Performance Clustered Computing (2007)

    Google Scholar 

  8. Crowe, A.M., McClean, C.J., Cresser, M.S.: An application of genetic algorithms to the robust estimation of soil organic and mineral fraction densities. Environmental Modelling & Software, Evolutionary Optimisation in Environmental Emergency Modelling 21(10), 1503–1507 (2006)

    Google Scholar 

  9. Denham, M., Cortés, A., Margalef, T., Luque, E.: Applying a dynamic data driven genetic algorithm to improve forest fire spread prediction. In: Computational Science- ICCS 2008. LNCS, pp. 36–45. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Mónica, M.D.: Predicción de la evolución de los incendios forestales guiada dinámicamente por los datos. PhD thesis, Universitat Autónoma de Barcelona, Spain (July 2009)

    Google Scholar 

  11. Divina, F., Marchiori, E.: Knowledge-based evolutionary search for inductive concept learning. In: Jin, Y. (ed.) Knowledge Incorporation in Evolutionary Computation, pp. 237–254. Springer, Heidelberg (2004)

    Google Scholar 

  12. Doherty, J.: PEST: Model-Independent Parameter Estimation. Watermark Numerical Computing, Brisbane, Australia (2009)

    Google Scholar 

  13. Finney, M.A.: Farsite: Fire area simulator - model development and evaluation. In: Forest Service Research Paper RMRS-RP-4, Department of Agriculture, Ogden, UT (2004)

    Google Scholar 

  14. Giacobbo, F., Marseguerra, M., Zio, E.: Solving the inverse problem of parameter estimation by genetic algorithms: the case of a groundwater contaminant transport model. Annals of Nuclear Energy 29(8), 967–981 (2002)

    Article  Google Scholar 

  15. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Kluwer Academic Publishers, Dordrecht (1989)

    MATH  Google Scholar 

  16. Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E., Nitzberg, B., Saphir, W., Snir, M.: MPI: The Complete Reference, vol. 2. MIT Press, Cambridge (1998)

    Google Scholar 

  17. He, K., Dong, S., Zheng, L.: Service-oriented grid computation for large-scale parameter estimation in complex environmental modeling. In: Proceedings of the 2006 ACM symposium on applied computing SAC 2006, pp. 741–745. ACM, New York (2006)

    Chapter  Google Scholar 

  18. Jager, H.I., King, A.W.: Spatial uncertainty and ecological models. Ecosystems 7(8), 841–847 (2004)

    Article  MATH  Google Scholar 

  19. Jin, Y. (ed.): Knowledge Incorporation in Evolutionary Computation. Studies in Fuzziness and Soft Computing, vol. 167. Springer, Heidelberg (2004)

    Google Scholar 

  20. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft Computing - A Fusion of Foundations, Methodologies and Applications 9, 3–12 (2005)

    Google Scholar 

  21. Jones, A.R., Thomson, D.J., Hort, M., Devenish, B.: The U.K. Met Office’s next-generation atmospheric dispersion model, NAME III. In: Air Pollution Modeling and its Application XVII (Proc. of the 27th NATO/CCMS Int. Technical Meeting on Air Pollution Modelling and its Application), pp. 580–589. Springer, Heidelberg (2007)

    Google Scholar 

  22. Kalman, R.E.: A new approach to linear filtering and prediction problems. Transactions of the ASME - Journal of Basic Engineering 82(Series D), 35–45 (1960)

    Google Scholar 

  23. Kanoh, H., Sakamoto, Y.: Knowledge-based genetic algorithm for university course timetabling problems. International Journal of Knowledge-based and Intelligent Engineering Systems 12(4), 283–294 (2007)

    Google Scholar 

  24. Kavetski, D., Franks, S.W., Kuczera, G.: Confronting input uncertainty in environmental modelling. In: Calibration of Watershed Models. Water Science and Applications Series, American Geophysical Union (2003)

    Google Scholar 

  25. Lee, Y.H., Park, S.K., Chang, D.-E.: Parameter estimation using the genetic algorithm and its impact on quantitative precipitation forecast. Annales Geophysicae 24(12), 3185–3189 (2006)

    Article  MATH  Google Scholar 

  26. Li, F., Lindquist, T.M.: Knowledge guided genetic algorithm for optimal contracting strategy in a typical standing reserve market. In: Power Engineering Society General Meeting, vol. 2, pp. 859–863 (2003)

    Google Scholar 

  27. Li, Y., Yao, D., Zheng, J., Yao, J.: A modified genetic algorithm for the beam angle optimization problem in intensity-modulated radiotherapy planning. In: Talbi, E.-G., Liardet, P., Collet, P., Lutton, E., Schoenauer, M. (eds.) EA 2005. LNCS, vol. 3871, pp. 97–106. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  28. Liu, Y., Khu, S.-T.: Automatic calibration of numerical models using fast optimization by fitness approximation. In: International Joint Conference on Neural Networks IJCNN 2007, pp. 1073–1078 (2007)

    Google Scholar 

  29. Montero, G., Rodriguez, E., Montenegro, R., Escobar, J.M., Gonzalez-Yuste, J.M.: Genetic algorithms for an improved parameter estimation with local refinement of tetrahedral meshes in a wind model. Advances in Engineering Software 36(1), 3–10 (2005)

    Article  MATH  Google Scholar 

  30. Morais, M.E.: Comparing spatially explicit models of fire spread through chaparral fuels: A new model based upon the rothermel fire spread equation. M.a. thesis, University of California, Santa Barbara, USA (June 2001)

    Google Scholar 

  31. Neumann, C.J.: An alternate to the HURRAN tropical cyclone forecast system. Tech. Memo. NWS SR-62, National Oceanic and Atmospheric Administration (1972)

    Google Scholar 

  32. Pelletier, G.J., Chapra, S.C., Tao, H.: Qual2kw - a framework for modeling water quality in streams and rivers using a genetic algorithm for calibration. Environmental Modelling & Software 21(3), 419–425 (2006)

    Article  Google Scholar 

  33. Poeter, E.P., Hill, M.C., Banta, E.R., Mehl, S., Christensen, S.: Ucode 2005 and six other computer codes for universal sensitivity analysis, calibration, and uncertainty evaluation. In: Techniques and Methods 6-A11, U.S. Geological Survey, Reston, Virginia (2005)

    Google Scholar 

  34. Poyton, A.A., Varziri, M.S., McAuley, K.B., McLellan, P.J., Ramsay, J.O.: Parameter estimation in continuous-time dynamic models using principal differential analysis. Computers& Chemical Engineering 30(4), 698–708 (2006)

    Article  Google Scholar 

  35. Rodríguez, R., Cortés, A., Margalef, T.: Injecting dynamic real-time data into a DDDAS for forest fire behavior prediction. In: Allen, G., Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2009. LNCS, vol. 5545, pp. 489–499. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  36. Rothermel, R.C.: A mathematical model for predicting fire spread in wildland fuels. Forest Service Research Paper INT-115, U.S. Dept. of Agriculture, Ogden (1972)

    Google Scholar 

  37. ScienceDaily and MIT. Preventing forest fires with tree power: Sensor system runs on electricity generated by trees (September 2008), http://www.sciencedaily.com/releases/2008/09/080922095435.htm (Cited October 28, 2010)

  38. Tymstra, C., Bryce, R.W., Wotton, B.M., Taylor, S.W., Armitage, O.B.: Development and structure of prometheus: the canadian wildland fire growth simulation model. Information Report NOR-X-417, Natural Resources Canada, Canadian Forest Service, Edmonton, Alberta (2010)

    Google Scholar 

  39. Viegas, D.X.: Spread project (October 2003), http://www.algosystems.gr/spread (Cited October 28, 2010)

  40. Vrugt, J.A., Nuallin, B., Robinson, B.A., Bouten, W., Dekker, S.C., Sloot, P.M.A.: Application of parallel computing to stochastic parameter estimation in environmental models. Computers & Geosciences 32(8), 1139–1155 (2006)

    Article  Google Scholar 

  41. Wang, Q.J.: Using genetic algorithms to optimise model parameters. Environmental Modelling & Software 12(1), 27–34 (1997)

    Article  MATH  Google Scholar 

  42. Wendt, K., Cortés, A., Margalef, T.: Knowledge-guided genetic algorithm for input parameter optimisation in environmental modelling. In: Procedia Computer Science ICCS 2010, vol. 1(1), pp. 1367–1375 (2010)

    Google Scholar 

  43. Randall Wilson, D., Martinez, T.R.: Improved heterogeneous distance functions. Journal of Artificial Intelligence Research 6, 1–34 (1997)

    MathSciNet  Google Scholar 

  44. Zhu, L., Chen, J.M., Qin, Q., Li, J., Wang, L.: Optimization of ecosystem model parameters using spatio-temporal soil moisture information. Ecological Modelling 220(18), 2121–2136 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wendt, K., Denham, M., Cortés, A., Margalef, T. (2011). Evolutionary Optimisation Techniques to Estimate Input Parameters in Environmental Emergency Modelling. In: Yang, XS., Koziel, S. (eds) Computational Optimization and Applications in Engineering and Industry. Studies in Computational Intelligence, vol 359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20986-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20986-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20985-7

  • Online ISBN: 978-3-642-20986-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics