On the Amount of Nonconstructivity in Learning Recursive Functions | SpringerLink
Skip to main content

On the Amount of Nonconstructivity in Learning Recursive Functions

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6648))

Abstract

Nonconstructive proofs are a powerful mechanism in mathematics. Furthermore, nonconstructive computations by various types of machines and automata have been considered by e.g., Karp and Lipton [] and Freivalds []. They allow to regard more complicated algorithms from the viewpoint of much more primitive computational devices. The amount of nonconstructivity is a quantitative characterization of the distance between types of computational devices with respect to solving a specific problem.

In the present paper, the amount of nonconstructivity in learning of recursive functions is studied. Different learning types are compared with respect to the amount of nonconstructivity needed to learn the whole class of general recursive functions. Upper and lower bounds for the amount of nonconstructivity needed are proved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adleman, L.M., Blum, M.: Inductive inference and unsolvability. The Journal of Symbolic Logic 56(3), 891–900 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bārzdiņš, J.M.: Complexity of programs to determine whether natural numbers not greater than n belong to a recursively enumerable set. Soviet Mathematics Doklady 9, 1251–1254 (1968)

    MATH  Google Scholar 

  3. Blum, M.: A machine independent theory of the complexity of recursive functions. Journal of the ACM 14(2), 322–336 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  4. Case, J., Smith, C.: Comparison of identification criteria for machine inductive inference. Theoretical Computer Science 25(2), 193–220 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cholak, P., Downey, R., Fortnow, L., Gasarch, W., Kinber, E., Kummer, M., Kurtz, S., Slaman, T.A.: Degrees of inferability. In: Proc. 5th Annual ACM Workshop on Computational Learning Theory, pp. 180–192. ACM Press, New York (1992)

    Chapter  Google Scholar 

  6. Damm, C., Holzer, M.: Automata that take advice. In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969, pp. 149–158. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  7. Erdős, P.: Some remarks on the theory of graphs. Bulletin of the American Mathematical Society 53(4), 292–294 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  8. Freivald, R.V., Wiehagen, R.: Inductive inference with additional information. Elektronische Informationsverarbeitung und Kybernetik 15(4), 179–185 (1979)

    MathSciNet  MATH  Google Scholar 

  9. Freivald, R.: Minimal gödel numbers and their identification in the limit. In: Bečvář, J. (ed.) MFCS 1975. LNCS, vol. 32, pp. 219–225. Springer, Heidelberg (1975)

    Google Scholar 

  10. Freivalds, R.: Inductive inference of recursive functions: Qualitative theory. In: Bārzdiņš, J., Bjørner, D. (eds.) Baltic Computer Science. LNCS, vol. 502, pp. 77–110. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  11. Freivalds, R.: Amount of nonconstructivity in finite automata. In: Maneth, S. (ed.) CIAA 2009. LNCS, vol. 5642, pp. 227–236. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Freivalds, R.: Amount of nonconstructivity in deterministic finite automata. Theoretical Computer Science 411(38-39), 3436–3443 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gold, E.M.: Limiting recursion. The Journal of Symbolic Logic 30, 28–48 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gold, E.M.: Language identification in the limit. Inform. Control 10(5), 447–474 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jain, S., Osherson, D., Royer, J.S., Sharma, A.: Systems that Learn: An Introduction to Learning Theory, 2nd edn. MIT Press, Cambridge (1999)

    Google Scholar 

  16. Kalmár, L.: On the reduction of the decision problem. First Paper. Ackermann prefix, a single binary predicate. The Journal of Symbolic Logic 4(1), 1–9 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  17. Karp, R.M., Lipton, R.J.: Turing machines that take advice. L’ Enseignement Mathématique 28, 191–209 (1982)

    MathSciNet  MATH  Google Scholar 

  18. КинϬер, Е.Б.: О лредельном синтезе почти минимальных геделевских номеров. In: Bārzdiņš, J. (ed.) Теория Алгоритмов и Программ, vol. I, pp. 212–223. Latvian State University (1974)

    Google Scholar 

  19. Kummer, M., Stephan, F.: On the structure of the degrees of inferability. Journal of Computer and System Sciences 52(2), 214–238 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Landweber, L.H., Robertson, E.L.: Recursive properties of abstract complexity classes. Journal of the ACM 19(2), 296–308 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pepis, J.: Ein Verfahren der mathematischen Logik. The Journal of Symbolic Logic 3(2), 61–76 (1938)

    Article  MATH  Google Scholar 

  22. Rogers Jr., H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967); reprinted, MIT Press (1987)

    MATH  Google Scholar 

  23. Trakhtenbrot, B.A., Barzdin, Y.M.: Finite Automata, Behavior and Synthesis. North Holland, Amsterdam (1973)

    MATH  Google Scholar 

  24. Wiehagen, R.: Zur Theorie der Algorithmischen Erkennung. Dissertation B, Humboldt-Universität zu Berlin (1978)

    Google Scholar 

  25. Zeugmann, T., Zilles, S.: Learning recursive functions: A survey. Theoretical Computer Science 397(1-3), 4–56 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Freivalds, R., Zeugmann, T. (2011). On the Amount of Nonconstructivity in Learning Recursive Functions. In: Ogihara, M., Tarui, J. (eds) Theory and Applications of Models of Computation. TAMC 2011. Lecture Notes in Computer Science, vol 6648. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20877-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20877-5_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20876-8

  • Online ISBN: 978-3-642-20877-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics