Manifold Answer-Set Programs and Their Applications | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6565))

Abstract

In answer-set programming (ASP), the main focus usually is on computing answer sets which correspond to solutions to the problem represented by a logic program. Simple reasoning over answer sets is sometimes supported by ASP systems (usually in the form of computing brave or cautious consequences), but slightly more involved reasoning problems require external postprocessing. Generally speaking, it is often desirable to use (a subset of) brave or cautious consequences of a program P 1 as input to another program P 2 in order to provide the desired solutions to the problem to be solved. In practice, the evaluation of the program P 1 currently has to be decoupled from the evaluation of P 2 using an intermediate step which collects the desired consequences of P 1 and provides them as input to P 2. In this work, we present a novel method for representing such a procedure within a single program, and thus within the realm of ASP itself. Our technique relies on rewriting P 1 into a so-called manifold program, which allows for accessing all desired consequences of P 1 within a single answer set. Then, this manifold program can be evaluated jointly with P 2 avoiding any intermediate computation step. For determining the consequences within the manifold program we use weak constraints, which is strongly motivated by complexity considerations. As applications, we present encodings for computing the ideal extension of an abstract argumentation framework and for computing world views of a particular class of epistemic specifications.

This work was supported by the Vienna Science and Technology Fund (WWTF), grant ICT08-028, and by M.I.U.R. within the Italia-Austria internazionalization project “Sistemi basati sulla logica per la rappresentazione di conoscenza: estensioni e tecniche di ottimizzazione” and the PRIN project LoDeN. A preliminary version of this paper appeared in the Proceedings of the the 10th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2009), pp. 115–128, Springer LNAI 5753, 2009.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Marek, V.W., Truszczyński, M.: Stable models and an alternative logic programming paradigm. In: Apt, K., Marek, V.W., Truszczyński, M., Warren, D.S. (eds.) The Logic Programming Paradigm – A 25-Year Perspective, pp. 375–398. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  2. Niemelä, I.: Logic programming with stable model semantics as a constraint programming paradigm. Ann. Math. Artif. Intell. 25(3-4), 241–273 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  4. Gelfond, M.: Representing knowledge in A-prolog. In: Kakas, A., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2408, pp. 413–451. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Balduccini, M., Gelfond, M., Watson, R., Nogueira, M.: The USA-advisor: A case study in answer set planning. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 439–442. Springer, Heidelberg (2001)

    Google Scholar 

  6. Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, W., Fink, M., Greco, G., Ianni, G., Kałka, E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, M., Staniszkis, W., Terracina, G.: The INFOMIX System for advanced integration of incomplete and inconsistent data. In: Proceedings of the 24th ACM SIGMOD International Conference on Management of Data (SIGMOD 2005), pp. 915–917. ACM Press, New York (2005)

    Chapter  Google Scholar 

  7. Soininen, T., Niemelä, I., Tiihonen, J., Sulonen, R.: Representing configuration knowledge with weight constraint rules. In: Provetti, A., Son, T.C. (eds.) Proceedings of the 1st International Workshop on Answer Set Programming (2001)

    Google Scholar 

  8. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyński, M.: The first answer set programming system competition. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 3–17. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Bravo, L., Bertossi, L.E.: Logic programs for consistently querying data integration systems. In: Gottlob, G., Walsh, T. (eds.) Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI 2003), pp. 10–15. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  10. Saccà, D.: Multiple total stable models are definitely needed to solve unique solution problems. Inf. Process. Lett. 58(5), 249–254 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Buccafurri, F., Leone, N., Rullo, P.: Enhancing disjunctive datalog by constraints. IEEE Trans. Knowl. Data Eng. 12(5), 845–860 (2000)

    Article  Google Scholar 

  12. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Log. 7(3), 499–562 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Reiter, R.: On closed world data bases. In: Gallaire, H., Minker, J. (eds.) Logic and Databases, pp. 55–76. Plenum Press, New York (1978)

    Google Scholar 

  14. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artif. Intell. 171(10-15), 619–641 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dung, P.M., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation. Artif. Intell. 171(10-15), 642–674 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gelfond, M.: Logic programming and reasoning with incomplete information. Annals of Mathematics and Artificial Intelligence 12(1-2), 89–116 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gelfond, M.: Strong introspection. In: Proceedings of the 9th National Conference on Artificial Intelligence (AAAI 1991), pp. 386–391. AAAI Press / The MIT Press (1991)

    Google Scholar 

  18. Wang, K., Zhang, Y.: Nested epistemic logic programs. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 279–290. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Zhang, Y.: Computational properties of epistemic logic programs. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proceedings of the 10th International Conference on Principles of Knowledge Representation and Reasoning (KR 2006), pp. 308–317. AAAI Press, Menlo Park (2006)

    Google Scholar 

  20. Zhang, Y.: Updating epistemic logic programs. J. Log. Comput. 19(2), 405–423 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Truszczyński, M.: Revisiting epistemic specifications. In: Balduccini, M., Son, T.C. (eds.) Gelfond Festschrift. LNCS (LNAI), vol. 6565, pp. 315–333. Springer, Heidelberg (2011)

    Google Scholar 

  22. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Comput. 9(3/4), 365–386 (1991)

    Article  MATH  Google Scholar 

  23. Egly, U., Gaggl, S.A., Woltran, S.: Answer-set programming encodings for argumentation frameworks. Argument and Computation 1(2), 144–177 (2010)

    Article  MATH  Google Scholar 

  24. Dunne, P.E.: The computational complexity of ideal semantics. Artif. Intell. 173(18), 1559–1591 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dunne, P.E.: Computational properties of argument systems satisfying graph-theoretic constraints. Artif. Intell. 171(10-15), 701–729 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Osorio, M., Zepeda, C., Nieves, J.C., Cortés, U.: Inferring acceptable arguments with answer set programming. In: Proceedings of the 6th Mexican International Conference on Computer Science (ENC 2005), pp. 198–205. IEEE, Los Alamitos (2005)

    Chapter  Google Scholar 

  28. Watson, R.: A splitting set theorem for epistemic specifications. In: Baral, C., Truszczyński, M. (eds.) Proceedings of the 8th International Workshop on Non-Monotonic Reasoning, NMR 2000 (2000), http://arxiv.org/abs/cs/0003038

  29. Eiter, T., Veith, H.: On the complexity of data disjunctions. Theor. Comput. Sci. 288(1), 101–128 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Delgrande, J.P., Schaub, T.: Reasoning credulously and skeptically within a single extension. Journal of Applied Non-Classical Logics 12(2), 259–285 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Computing preferred answer sets by meta-interpretation in answer set programming. TPLP 3(4-5), 463–498 (2003)

    MathSciNet  MATH  Google Scholar 

  32. Faber, W., Woltran, S.: A framework for programming with module consequences. In: de Vos, M., Schaub, T. (eds.) Proceedings of the LPNMR 2009 Workshop on Software Engineering for Answer Set Programming, SEA 2009, pp. 34–48 (2009), http://sea09.cs.bath.ac.uk/downloads/sea09proceedings.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Faber, W., Woltran, S. (2011). Manifold Answer-Set Programs and Their Applications. In: Balduccini, M., Son, T.C. (eds) Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning. Lecture Notes in Computer Science(), vol 6565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20832-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20832-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20831-7

  • Online ISBN: 978-3-642-20832-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics