On the Practical Side of Answer Set Programming | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6565))

  • 871 Accesses

Abstract

We examine issues that arise from creating practical tools that combine answer set programming (ASP) with programs created using traditional programming languages. A tool is mostly written in a traditional language and it calls an ASP solver as an oracle to solve some difficult subproblem that is best represented using ASP. We give a brief introduction on a generate-and-test based methodology for creating ASP programs and on how to optimize them for efficiency. We examine methods for computing answer sets incrementally based on user choices and show how we can guide the user in making the choices and how to give diagnostic information in the case that the user’s choices are inconsistent. We use the kakuro puzzles as a practical example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the Really Hard Problems Are. In: 12th International Joint Conference on Artificial Intelligence, pp. 331–337. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  2. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM Trans. Database Syst. 22(3), 364–418 (1997)

    Article  Google Scholar 

  3. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: 5th International Conference on Logic Programming, pp. 1070–1080. The MIT Press, Cambridge (1988)

    Google Scholar 

  4. Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: 7th International Conference on Logic Programming, pp. 579–597. The MIT Press, Cambridge (1990)

    Google Scholar 

  5. Gomes, C.P., Selman, B., Kautz, H.: Heavy-tailed phenomena in satisfiability and constraint satisfaction problems. J. Autom. Reasoning 24, 67–100 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Marek, V.W., Truszczyński, M.: Stable models and an alternative logic programming paradigm. In: Apt, K., Marek, V., Truszczyński, M., Warren, D. (eds.) The Logic Programming Paradigm: a 25-Year Perspective, pp. 375–398. Springer, Heidelberg (1998)

    Google Scholar 

  7. Mitchell, D.G., Selman, B., Levesque, H.J.: Hard and easy distributions for SAT problems. In: Rosenbloom, P., Szolovits, P. (eds.) 10th National Conference on Artificial Intelligence, pp. 459–465. AAAI Press, Menlo Park (1992)

    Google Scholar 

  8. Newell, A., Simon, H.A.: Computer science as empirical inquiry: symbols and search. Commun. ACM 19(3), 113–126 (1976)

    Article  MathSciNet  Google Scholar 

  9. Niemelä, I., Simons, P., Syrjänen, T.: Smodels: A system for answer set programming. In: 8th International Workshop on Non-Monotonic Reasoning (2000)

    Google Scholar 

  10. Schlipf, J.S.: The expressive powers of logic programming semantics. J. Comput. Syst. Sci. 51(1), 64–86 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sutter, H., Alexandrescu, A.: C++ Coding Standards. Addison-Wesley, Reading (2005)

    Google Scholar 

  12. Syrjänen, T.: Logic Programs and Cardinality Constraints: Theory and Practice. Doctoral dissertation, TKK Dissertations in Information and Computer Science TKK-ICS-D12, Helsinki University of Technology, Faculty of Information and Natural Sciences, Department of Information and Computer Science, Espoo, Finland (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Syrjänen, T. (2011). On the Practical Side of Answer Set Programming. In: Balduccini, M., Son, T.C. (eds) Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning. Lecture Notes in Computer Science(), vol 6565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20832-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20832-4_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20831-7

  • Online ISBN: 978-3-642-20832-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics