Revisiting Epistemic Specifications | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6565))

Abstract

In 1991, Michael Gelfond introduced the language of epistemic specifications. The goal was to develop tools for modeling problems that require some form of meta-reasoning, that is, reasoning over multiple possible worlds. Despite their relevance to knowledge representation, epistemic specifications have received relatively little attention so far. In this paper, we revisit the formalism of epistemic specification. We offer a new definition of the formalism, propose several semantics (one of which, under syntactic restrictions we assume, turns out to be equivalent to the original semantics by Gelfond), derive some complexity results and, finally, show the effectiveness of the formalism for modeling problems requiring meta-reasoning considered recently by Faber and Woltran. All these results show that epistemic specifications deserve much more attention that has been afforded to them so far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9, 365–385 (1991)

    Article  MATH  Google Scholar 

  2. Gelfond, M., Lifschitz, V.: The stable semantics for logic programs. In: Proceedings of the 5th International Conference on Logic Programming (ICLP 1988), pp. 1070–1080. MIT Press, Cambridge (1988)

    Google Scholar 

  3. Gelfond, M.: Strong introspection. In: Proceedings of AAAI 1991, pp. 386–391 (1991)

    Google Scholar 

  4. Faber, W., Woltran, S.: Manifold answer-set programs for meta-reasoning. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 115–128. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Faber, W., Woltran, S.: Manifold answer-set programs and their applications. In: Balduccini, M., Son, T.C. (eds.) Gelfond Festschrift. LNCS (LNAI), vol. 6565, pp. 44–63. Springer, Heidelberg (2011)

    Google Scholar 

  6. Marek, W., Truszczyński, M.: Autoepistemic logic. Journal of the ACM 38, 588–619 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: propositional case. Annals of Mathematics and Artificial Intelligence 15, 289–323 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Apt, K., Blair, H., Walker, A.: Towards a theory of declarative knowledge. In: Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, pp. 89–142. Morgan Kaufmann, San Francisco (1988)

    Chapter  Google Scholar 

  9. Baral, C., Gelfond, M.: Logic programming and knowledge representation. Journal of Logic Programming 19/20, 73–148 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brass, S., Dix, J.: Characterizations of the Disjunctive Stable Semantics by Partial Evaluation. Journal of Logic Programming 32(3), 207–228 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Inoue, K., Sakama, C.: Negation as failure in the head. Journal of Logic Programming 35, 39–78 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Truszczynski, M.: Reducts of propositional theories, satisfiability relations, and generalizations of semantics of logic programs. Artificial Intelligence (2010) (in press), available through Science Direct at http://dx.doi.org/10.1016/j.artint.2010.08.004

  14. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: semantics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 200–212. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Truszczyński, M. (2011). Revisiting Epistemic Specifications. In: Balduccini, M., Son, T.C. (eds) Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning. Lecture Notes in Computer Science(), vol 6565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20832-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20832-4_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20831-7

  • Online ISBN: 978-3-642-20832-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics