Cantor’s Paradise Regained: Constructive Mathematics from Brouwer to Kolmogorov to Gelfond | SpringerLink
Skip to main content

Cantor’s Paradise Regained: Constructive Mathematics from Brouwer to Kolmogorov to Gelfond

  • Chapter
Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6565))

  • 881 Accesses

Abstract

Constructive mathematics, mathematics in which the existence of an object means that that we can actually construct this object, started as a heavily restricted version of mathematics, a version in which many commonly used mathematical techniques (like the Law of Excluded Middle) were forbidden to maintain constructivity. Eventually, it turned out that not only constructive mathematics is not a weakened version of the classical one – as it was originally perceived – but that, vice versa, classical mathematics can be viewed as a particular (thus, weaker) case of the constructive one. Crucial results in this direction were obtained by M. Gelfond in the 1970s. In this paper, we mention the history of these results, and show how these results affected constructive mathematics, how they led to new algorithms, and how they affected the current activity in logic programming-related research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aberth, O.: Precise Numerical Analysis Using C++. Academic Press, New York (1998)

    MATH  Google Scholar 

  2. Beeson, M.J.: Foundations of Constructive Mathematics. Springer, New York (1985)

    Book  MATH  Google Scholar 

  3. Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill, New York (1967)

    MATH  Google Scholar 

  4. Bishop, E., Bridges, D.S.: Constructive Analysis. Springer, New York (1985)

    Book  MATH  Google Scholar 

  5. Bridges, D.S.: Constructive Functional Analysis. Pitman, London (1979)

    MATH  Google Scholar 

  6. Bridges, D.S., Via, S.L.: Techniques of Constructive Analysis. Springer, New York (2006)

    Book  Google Scholar 

  7. Brouwer, L.E.J.: Over de Grondslagen der Wiskunde, Ph.D. thesis, Universiteit van Amsterdam (1907); in Dutch, English translation in Heyting, A. (ed.), Collected Works of L.E.J. Brouwer. I: Philosophy and Foundations of Mathematics, pp. 11–101. North-Holland, Amsterdam (1975)

    Google Scholar 

  8. Brouwer, L.E.J.: Über die Bedeutung des Satzes vom ausgeschlossenen Dritten in der Mathematik, insbesondere in der Funktionentheorie. Journal für die reine und angewandte Mathematik 154, 1–7 (1924) (in German); English translation: On the significance of the principle of excluded middle in mathematics, especially in function theory. In: van Heijenoort, J. (ed.), A Source Book in Mathematical Logic, 1879-1931, From Frege to Gödel, pp. 334–345. Harvard University Press, Cambridge (1967)

    MATH  Google Scholar 

  9. Busemann, H.: The Geometry of Geodesics. Dover Publ., New York (2005)

    MATH  Google Scholar 

  10. Cox, D.A., Little, J.B., O’Shea, D.: Ideals, Varieties, and Algorithms. Springer, New York (1997)

    MATH  Google Scholar 

  11. Gel’fond, M.G.: On constructive pseudofunctions. Proceedings of the Leningrad Mathematical Institute of the Academy of Sciences 16, 20–27 (1969) (in Russian); English translation in: Seminars in Mathematics Published by Consultants Bureau (New York-London) 16, 7–10 (1971)

    MathSciNet  MATH  Google Scholar 

  12. Gel’fond, M.G.: Relationship between the classical and constructive developments of mathematical analysis. Proceedings of the Leningrad Mathematical Institute of the Academy of Sciences 32, 5–11 (1972) (in Russian); English translation in Journal of Soviet Mathematics 6(4), 347–352 (1976).

    Google Scholar 

  13. Gelfond, M.G.: Classes of formulas of classical analysis which are consistent with the constructive interpretation, PhD Dissertation, Leningrad Mathematical Institute of the Academy of Sciences (1975) (in Russian)

    Google Scholar 

  14. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the Fifth International Conference on Logic Programming ICLP, pp. 1070–1080 (1988)

    Google Scholar 

  15. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9, 365–385 (1991)

    Article  MATH  Google Scholar 

  16. Hilbert, D.: Zur Theorie der algebraischen Gebilde. Nachrichten von der Königlichen Gesellschaft der Wissenschaften und der Georg- Augusts-Universität zu Göttingen, 450–457 (1988); 25–34, 423–430 (1889) (in German)

    Google Scholar 

  17. Hilbert, D.: Über die Theorie der algebraischen Formen. Mathematische Annalen 36, 473–534 (1890) (in German)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hilbert, D.: Über die theorie der algebraischen invarianten. Nachrichten von der Königlichen Gesellschaft der Wissenschaften und der Georg- Augusts-Universität zu Göttingen, 232–241 (1891); 6–16, 439–448 (1892) (in German)

    Google Scholar 

  19. Hilbert, D.: Über die vollen Invariantensysteme. Mathematische Annalen 42, 313–370 (1893) (in German)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hilbert, D.: Theory of Algebraic Invariants. Cambrdige University Press, Cambridge (1993) (Lecture Notes from 1897)

    MATH  Google Scholar 

  21. Kohlenbach, U.: Theorie der majorisierbaren und stetigen Funktionale und ihre Anwendung bei der Extraktion von Schranken aus inkonstruktiven Beweisen: Effektive Eindeutigkeitsmodule bei besten Approximationen aus ineffektiven Eindeutigkeitsbeweisen, Ph.D. Dissertation, Frankfurt am Main (1990) (in German)

    Google Scholar 

  22. Kohlenbach, U.: Effective moduli from ineffective uniqueness proofs. An unwinding of de La Vallée Poussin’s proof for Chebycheff approximation. Annals for Pure and Applied Logic 64(1), 27–94 (1993)

    Article  MATH  Google Scholar 

  23. Kohlenbach, U.: Applied Proof Theory: Proof Interpretations and their Use in Mathematics. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  24. Kolmogorov, A.N.: O printsipe tertium non datur. Matematicheskij Sbornik 32, 646–667 (1925) (in Russian); English translation: On the principle of excluded middle. In: A Source Book in Mathematical Logic, 1879-1931, van Heijenoort, J. (ed.), From Frege to Gödel, pp. 414–437. Harvard University Press, Cambridge (1967)

    MATH  Google Scholar 

  25. Kreinovich, V.: Uniqueness implies algorithmic computability. In: Proceedings of the 4th Student Mathematical Conference, pp. 19–21. Leningrad University, Leningrad (1975) (in Russian)

    Google Scholar 

  26. Kreinovich, V.: Reviewer’s remarks in a review of Bridges. In: D.S.: Constrictive Functional Analysis. Pitman, London (1979); Zentralblatt für Mathematik 401, 22–24 (1979)

    Google Scholar 

  27. Kreinovich, V.: Categories of space-time models, Ph.D. dissertation, Novosibirsk, Soviet Academy of Sciences, Siberian Branch, Institute of Mathematics (1979) (in Russian)

    Google Scholar 

  28. Kreinovich, V.: Physics-motivated ideas for extracting efficient bounds (and algorithms) from classical proofs: beyond local compactness, beyond uniqueness. In: Abstracts of the Conference on the Methods of Proof Theory in Mathematics, Max-Planck Institut für Mathematik, Bonn, Germany, June 3-10, p. 8 (2007)

    Google Scholar 

  29. Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational complexity and feasibility of data processing and interval computations. Kluwer, Dordrecht (1998)

    Book  MATH  Google Scholar 

  30. Kushner, B.A.: Lectures on Constructive Mathematical Analysis. Amer. Math. Soc., Providence (1984)

    MATH  Google Scholar 

  31. Lacombe, D.: Les ensembles récursivement ouvert ou fermés, et leurs applications à l’analyse récurslve. Compt. Rend. 245(13), 1040–1043 (1957)

    MathSciNet  MATH  Google Scholar 

  32. Lifschitz, V.A.: Investigation of constructive functions by the method of fillings. J. Soviet Math. 1, 41–47 (1973)

    Article  Google Scholar 

  33. Noether, M.: Paul Gordan. Mathematisce Annalen 75, 1–41 (1914)

    Article  MathSciNet  Google Scholar 

  34. Pour-El, M., Richards, J.: Computability in Analysis and Physics. Springer, New York (1989)

    Book  MATH  Google Scholar 

  35. Weyl, H.: Das Kontinuum. Veyt, Leipzig (1918) (in German); English translation: The Continuum: A Critical Examination of the Foundation of Analysis. Dover Publ., New York (1994)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kreinovich, V. (2011). Cantor’s Paradise Regained: Constructive Mathematics from Brouwer to Kolmogorov to Gelfond. In: Balduccini, M., Son, T.C. (eds) Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning. Lecture Notes in Computer Science(), vol 6565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20832-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20832-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20831-7

  • Online ISBN: 978-3-642-20832-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics