Memory-Based Immigrants for Ant Colony Optimization in Changing Environments | SpringerLink
Skip to main content

Memory-Based Immigrants for Ant Colony Optimization in Changing Environments

  • Conference paper
Applications of Evolutionary Computation (EvoApplications 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6624))

Included in the following conference series:

Abstract

Ant colony optimization (ACO) algorithms have proved that they can adapt to dynamic optimization problems (DOPs) when they are enhanced to maintain diversity. DOPs are important due to their similarities to many real-world applications. Several approaches have been integrated with ACO to improve their performance in DOPs, where memory-based approaches and immigrants schemes have shown good results on different variations of the dynamic travelling salesman problem (DTSP). In this paper, we consider a novel variation of DTSP where traffic jams occur in a cyclic pattern. This means that old environments will re-appear in the future. A hybrid method that combines memory and immigrants schemes is proposed into ACO to address this kind of DTSPs. The memory-based approach is useful to directly move the population to promising areas in the new environment by using solutions stored in the memory. The immigrants scheme is useful to maintain the diversity within the population. The experimental results based on different test cases of the DTSP show that the memory-based immigrants scheme enhances the performance of ACO in cyclic dynamic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York (1999)

    MATH  Google Scholar 

  2. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. on Syst., Man and Cybern., Part B: Cybern. 26(1), 29–41 (1996)

    Article  Google Scholar 

  3. Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press, London (2004)

    MATH  Google Scholar 

  4. Eyckelhof, C.J., Snoek, M.: Ant Systems for a Dynamic TSP. In: ANTS 2002: Proc. of the 3rd Int. Workshop on Ant Algorithms, pp. 88–99 (2002)

    Google Scholar 

  5. Grefenestette, J.J.: Genetic algorithms for changing environments. In: Proc. of the 2nd Int. Conf. on Parallel Problem Solving from Nature, pp. 137–144 (1992)

    Google Scholar 

  6. Guntsch, M., Middendorf, M.: Applying population based ACO to dynamic optimization problems. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms 2002. LNCS, vol. 2463, pp. 111–122. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Guntsch, M., Middendorf, M.: Pheromone modification strategies for ant algorithms applied to dynamic TSP. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoIASP 2001, EvoWorkshops 2001, EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001, and EvoLearn 2001. LNCS, vol. 2037, pp. 213–222. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Guntsch, M., Middendorf, M., Schmeck, H.: An ant colony optimization approach to dynamic TSP. In: Proc. of the 2001 Genetic and Evol. Comput. Conf., pp. 860–867 (2001)

    Google Scholar 

  9. Guo, T., Michalewicz, Z.: Inver-over operator for the TSP. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 803–812. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  10. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments - a survey. IEEE Trans. on Evol. Comput. 9(3), 303–317 (2005)

    Article  Google Scholar 

  11. Mavrovouniotis, M., Yang, S.: Ant colony optimization with immigrants schemes in dynamic environments. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 371–380. Springer, Heidelberg (2010)

    Google Scholar 

  12. Rizzoli, A.E., Montemanni, R., Lucibello, E., Gambardella, L.M.: Ant colony optimization for real-world vehicle routing problems - from theory to applications. Swarm Intelli. 1(2), 135–151 (2007)

    Article  Google Scholar 

  13. Stützle, T., Hoos, H.: The MAX-MIN ant system and local search for the traveling salesman problem. In: Proc. of the 1997 IEEE Int. Conf. on Evol. Comput., pp. 309–314 (1997)

    Google Scholar 

  14. Yang, S.: Memory-based immigrants for genetic algorithms in dynamic environments. In: Proc. of the 2005 Genetic and Evol. Comput. Conf., vol. 2, pp. 1115–1122 (2005)

    Google Scholar 

  15. Yang, S.: Genetic algorithms with memory and elitism based immigrants in dynamic environments. Evol. Comput. 16(3), 385–416 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mavrovouniotis, M., Yang, S. (2011). Memory-Based Immigrants for Ant Colony Optimization in Changing Environments. In: Di Chio, C., et al. Applications of Evolutionary Computation. EvoApplications 2011. Lecture Notes in Computer Science, vol 6624. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20525-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20525-5_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20524-8

  • Online ISBN: 978-3-642-20525-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics